

HPC/Exascale Centre of Excellence in Personalised Medicine

Practical session with PhysiCell

José Carbonell Caballero Thalia Diniaco

The PerMedCoE project has received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement $N^{\circ}951773$

These materials are free cultural works licensed under a Creative Commons <u>Attribution 4.0</u> International (CC BY 4.0) license

Simulating a cellular microenvironment

Simulating a cellular microenvironment

Personalised Medicine and Digital Twins

В С Real World Α Data Time **Digital Thread** D KIN (

Towards patient-specific treatments

Björnsson, B., Borrebaeck, C., Elander, N. et al. Digital twins to personalize medicine. Genome Med 12, 4 (2020).

Core tools

PhysiCell

- Physics-based virtual microscope
- Implements Agent-Based programming
- Cell phenotype and cell-cell interactions
- Diffusion transport solver

Ghaffarizadeh, A. et al (2018). https://doi.org/10.1371/journal.pcbi.1005991

The framework recapitulates main cellular features

- Cell motility (and chemotaxis)
- Cell cycle phases (GO/G1, S, G2, M)
- Cell death (apoptosis and necrosis)
- Cell volume (nucleus and cytoplasm)
- Cell growth
- Substrate production/consumption
- Physical interaction between cells
- Phagocytosis

Extending PhysiCell

Introducing molecular pathways into multiscale agents

Tobey J et al..Neuro-Oncology, Volume 16, Issue 1, (2013)

Ghaffarizadeh A et al. PLoS Comput Biol. 2018

PhysiCell

BioFVM (diffusive transport solver)

Extending PhysiCell

PhysiBoss (PhysiCell + MaBoSS)

Cell state and decisions depend on embedded boolean models

Letort, G., Montagud, A. et al (2019). Bioinformatics, 35(7), 1188–1196. https://doi.org/10.1093/bioinformatics/bty766

Extending PhysiCell

Agent-based + probabilistic logical models (PhysiCell + MaBoSS)

Molecular Pathways

Parallel computing

Traditional approaches

- Native support
- Based on logical threads
- POSIX threads (IEEE)

Serial computing

Parallel computing

<u>OpenMP</u>

- Directive-based
- Simple and flexible interface for developing parallel application
- API for direct multi-threaded, shared memory parallelism
- Comprised of three primary API components:
 - Compiler Directives
 - Runtime Library Routines
 - Environment Variables

Parallel computing

```
#include <stdio.h>
#include <omp.h>
int main(int argc, char** argv){
   int partial_Sum, total_Sum;
    #pragma omp parallel private(partial_Sum) shared(total_Sum)
        partial_Sum = 0;
        total_Sum = 0;
        #pragma omp for
            for(int i = 1; i <= 1000; i++){</pre>
                partial_Sum += i;
            3
        }
        //Create thread safe region.
        #pragma omp critical
                //add each threads partial sum to the total sum
                total_Sum += partial_Sum;
        }
   printf("Total Sum: %d\n", total_Sum);
   return 0;
```


	Example ploop.1.c
S-1	void simple(int n, float *a, float *b)
S-2	{
S-3	int i;
S-4	
S-5	<pre>#pragma omp parallel for</pre>
S-6	<pre>for (i=1; i<n; *="" <="" by="" default="" i="" i++)="" is="" pre="" private=""></n;></pre>
S-7	b[i] = (a[i] + a[i-1]) / 2.0;
S-8	}

Distributed computing

Message Passing Interface (MPI)

- API for coordinating different nodes to jointly perform a given task
- Communication via the local network (latency is an issue)
- Several nodes work as a single machine
- Different implementations (OpenMPI, Intel MPI)

Distributed computing

Message Passing Interface (MPI)

```
#include <stdio.h>
#include <mpi.h>
int main(int argc, char** argv){
    int process_Rank, size_Of_Cluster;
    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &size_Of_Cluster);
    MPI_Comm_rank(MPI_COMM_WORLD, &process_Rank);
    for(int i = 0, i < size_Of_Cluster, i++){</pre>
        if(i == process_Rank){
            printf("Hello World from process %d of %d\n", process_Rank, size_Of_Cluster);
        }
        MPI_Barrier(MPI_COMM_WORLD);
    }
    MPI_Finalize();
    return 0;
```


Refactoring strategies in PhysiCell

PhysiCell-MPI

Connected to other voxels through Moore neighborhood (PDE solver)

way. Needed to exchange information between neighbour voxels

Hands-on

18

				CORES					
		1	2	4	8	16	24	48	
	1	266.942	179.2124	117.6434	71.4096	79.2203	50.5011	25.387	
NODES	2	123.5726	85.8754	60.0800271	39.0463				
	4	99.2707	77.2388	56.7724					

THANK YOU

Follow us in social media:

www.linkedin.com/company/permedcoe

@permedcoe

The PerMedCoE project has received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement N°951773

HPC/Exascale Centre of Excellence in Personalised Medicine

www.permedcoe.eu