

D1.2 Software best practices and
optimisation interim report

Version 1.0

Contract Number 951773

Project Website http://www.permedcoe.eu/

Contractual Deadline M18, March 2022

Dissemination Level PU

Nature R

Author(s)
Jesse Harrison (CSC), Arnau Montagud (BSC), Vincent
Noël (IC), Pablo Rodríguez-Mier (UKHD), Miroslav
Kratochvíl (UNILU)

Contributor(s) -

Reviewer(s) Jose Carbonell (BSC), Javier Nieto (ATOS)

Keywords Best practices, software optimisation, benchmarking

Notice: The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No “951773”.

 2020 PerMedCoE Consortium Partners. All rights reserved.

D1.2 Software best practices and optimisation interim report
Version 1.0

2

1.1. Change Log

Version Author Date Description of Change

V0.1 Jesse Harrison 01 March
2022

Initial draft

V0.2 Jesse Harrison 22 March
2022

Version incorporating reviewer feedback

V1.0 Alba Jené 31 March
2022

Minor editorial changes

 (Final Change Log entries reserved for releases to

the EC)

D1.2 Software best practices and optimisation interim report
Version 1.0

3

Table of contents

Table of contents ... 3

1. Executive Summary .. 4

2. Introduction .. 5

2.1 Deliverable background and aims .. 5

2.2 Relation to other Deliverables and Milestones .. 5

3. Application optimisation, best practices and scalability roadmap updates 6

3.1 PhysiCell-X ... 6

3.2 MaBoSS ... 9

3.3 CellNOpt / CARNIVAL .. 13

3.4 COBREXA ... 16

4. Preliminary core application efficiencies and development areas 20

4.1 PhysiCell-X ... 20

4.2 MaBoSS ... 21

4.3 CellNOpt / CARNIVAL .. 23

4.4 COBREXA ... 25

5. Conclusions and future tasks ... 28

6. Annex I: Software best practices follow-up questionnaire template 29

Acronyms and Abbreviations ... 32

References ... 33

D1.2 Software best practices and optimisation interim report
Version 1.0

4

1. Executive Summary
This Deliverable provides an update on software best practices applied to the
upscaling of PerMedCoE core applications for use on HPC platforms, including updated
development steps with reference to software scalability and extension processes.
Further to outlining optimisation plans and scalability roadmap revisions for each core
application, current benchmarking and PoP collaboration developments (since the
submission of Deliverable D1.1) are summarised. The overview of core tool adherence
to the software best-practice guidelines established in Deliverable D1.1 is based on a
follow-up survey circulated among PerMedCoE tool developers.

D1.2 Software best practices and optimisation interim report
Version 1.0

5

2. Introduction
2.1 Deliverable background and aims

A key objective of PerMedCoE is to upscale several existing cell-level simulation
software tools for use on diverse HPC platforms. Activities in relation to software tool
optimisation have focused on four core applications (PhysiCell, MaBoSS, CellNOpt /
CARNIVAL and COBRA). As part of the PerMedCoE mid-term review, this Deliverable
provides tool-specific updates on core application optimisation steps to date,
adherence of the core applications to software best-practice guidelines, scalability
roadmap revisions, and performance benchmarks performed either individually by the
core tool development teams or in collaboration with PoP.

Adherence to best-practice guidelines was evaluated using a follow-up survey
circulated among PerMedCoE tool developers (Annex I). Specifically, the
questionnaire was used to:

• Assess tool adherence to FAIR principles.

• Collect information on the requirements underlying core tool development
activities, as part of which core tool developers were requested to provide a
brief description of steps taken to identify needs, lacks and desired
functionalities of a given core tool in the context of PerMedCoE.

• Identify potential commonalities between tools, i.e. features, functionalities or
general sets of code that could be reused across the PerMedCoE tool collection
(or a subset of it).

• Obtain details on steps taken to validate tool functionality, particularly with
reference to cross-comparisons between tool versions and via potential end-
user testing.

2.2 Relation to other Deliverables and Milestones

Deliverable 1.2 serves as a continuation to Deliverable D1.1 [1] and Milestone MS05
[2]. For best-practice guidelines on PerMedCoE software containerisation and
workflow development, see Deliverable D2.2 [3]. Official new developments and a
public code release are also available in Deliverable D1.3 [4].

Topics concerning software best practices described in Deliverable D1.1 and not
included in the follow-up survey in the present report are addressed by other
PerMedCoE deliverables. The use of optimised core applications as part of different
use cases is described in Deliverable D3.4 [5]. Recommendations for building block
and workflow design, building block and workflow adherence to software best
practices, and dependencies on system libraries introduced by core tool upscaling are
discussed in Deliverable D2.2 [3].

D1.2 Software best practices and optimisation interim report
Version 1.0

6

3. Application optimisation, best practices and
scalability roadmap updates

This Section summarises key development steps in relation to the refactoring of
PerMedCoE core applications for use on HPC platforms, and adherence of the
refactored software to software best-practices described in Deliverable D1.1 [1].
Updates are also provided with reference to the scalability roadmap described in
Deliverable D1.1 [1].

3.1 PhysiCell-X

3.1.1 Application optimisation

PhysiCell-X (https://gitlab.bsc.es/gsaxena/physicell_x) is a version of PhysiCell
(https://github.com/MathCancer/PhysiCell) developed for use on HPC platforms as
part of PerMedCoE, incorporating support for parallel computation using OpenMP and
MPI. While prior PhysiCell versions include support for shared-memory parallelization
using OpenMP, hybrid OpenMP-MPI parallelism can be used to execute large-scale
cell-level models involving millions of cells, with such models requiring the use of
thousands of cores distributed over several compute nodes. A key development
update to enable MPI support in PhysiCell-X has involved using 1-D domain
decomposition to allocate voxels to individual MPI processes published as BioFVM-X
[6], addressing the challenge of subdomain partitioning identified in Deliverable D1.1
[1].

3.1.2 Adherence to software best practices

FAIR principles

Details on the adherence of PhysiCell-X to FAIR principles are provided in Table 1.

Principle FAIR principle requirements Answer Further details

F
(Findable
)

Formal tool release made
public on GitHub?

Yes
(PhysiCe
ll)

Public repository:
https://gitlab.bsc.es/gsaxena/physicell_x

 Dissemination of formal tool
releases

Yes Dissemination actions:

BioFVM-X presented at the 19th International
Conference on Computational Methods in
Systems Biology, 22nd-24th September 2021,
Bordeaux, France and Online

BioFVM-X presented at PerMedCoE's booth at
ISMB/ECCB 2021 on July 28 2021

PhysiCell-X used in PerMedCoE-BioExcel PATC
course in January-February 2022

https://gitlab.bsc.es/gsaxena/physicell_x
https://github.com/MathCancer/PhysiCell
https://github.com/MathCancer/PhysiCell

D1.2 Software best practices and optimisation interim report
Version 1.0

7

A
(Accessib
le)

Is the core tool fully open-
source?

Yes Tool licence: BSD 3-Clause Licence

I
(Interop
erable)

Singularity (Apptainer)
container available?

Ongoing Not available yet for PhysiCell-X

Definition file for PhysiCell/PhysiBoSS (employed
by Use Case 5):
https://github.com/PerMedCoE/BuildingBlocks/b
lob/main/Resources/images/PhysiCell-
COVID19.singularity

 If a Singularity container is
available, are dependencies
and auxiliary installations
version-controlled?

Not yet In progress (versions to be defined, cross-
compared and harmonised between building
blocks)

 Are tool versions
systematically versioned (e.g.
Major.Minor.Patch) and
documented using a
changelog?

Yes Core software releases are semantically
versioned and documented using a changelog

R
(Reusabl
e)

Test suite (e.g. brief test code)
available for each release?

Yes Two experiments as test code (heterogeneity
and predator-prey)

 Open-licence user
documentation available?

Yes Available in core tool GitHub repository:

https://gitlab.bsc.es/gsaxena/physicell_x/-
/blob/master/documentation/PhysiCell-
X_UserGuide.pdf

 Benchmarking activities
completed or underway as
part of PerMedCoE Task 3.1

Ongoing Initial community benchmarks are available in
Deliverable 3.3 [7]

Scalability benchmarks for PhysiCell are available
in section 4.1.2 of the present document

Table 1. PhysiCell-X adherence to FAIR principles.

Requirements underlying software development

PhysiCell-X development activities have been motivated by the requirement for a
version of PhysiCell that is:

• Efficient, with simulations performed using low-level code (and with no
scripting languages employed)

• Lightweight, cross-platform and based on minimal dependencies, for improved
ease of installation, use and version control

• Sufficiently flexible to accommodate diverse modelling scenarios

https://github.com/PerMedCoE/BuildingBlocks/blob/main/Resources/images/PhysiCell-COVID19.singularity
https://github.com/PerMedCoE/BuildingBlocks/blob/main/Resources/images/PhysiCell-COVID19.singularity
https://github.com/PerMedCoE/BuildingBlocks/blob/main/Resources/images/PhysiCell-COVID19.singularity
https://gitlab.bsc.es/gsaxena/physicell_x/-/blob/master/documentation/PhysiCell-X_UserGuide.pdf
https://gitlab.bsc.es/gsaxena/physicell_x/-/blob/master/documentation/PhysiCell-X_UserGuide.pdf
https://gitlab.bsc.es/gsaxena/physicell_x/-/blob/master/documentation/PhysiCell-X_UserGuide.pdf
https://gitlab.bsc.es/gsaxena/physicell_x/-/blob/master/documentation/PhysiCell-X_UserGuide.pdf

D1.2 Software best practices and optimisation interim report
Version 1.0

8

• Based on compartmentalised code for improved reusability

Commonalities and validation of functionality

PhysiCell-X is based on C++ and shares most of its code with PhysiCell. The focus of
PhysiCell-X and PhysiCell is to model populations of cells by using off-lattice agent-
based modelling.

This tool has a high capability of being connected to the rest of PerMedCoE core tools
that focus on intracellular processes. One such connection that has already been done
is PhysiBoSS, where MaBoSS is embedded into PhysiCell, to provide stochastic
simulations of Boolean models inside each agent.

Functionality cross-checks for new versions of PhysiCell have been performed for
v1.6.1 - v1.9. Systematic comparisons of results produced by PhysiCell-X versus
PhysiCell versions are being used as test cases and are planned as part of future
PerMedCoE activities.

3.1.3 Scalability roadmap revisions

Updates and further tasks with reference to the scalability roadmap for PhysiCell-X
include:

i) Employing MPI for large-scale simulations. Large-scale simulations addressed using
PhysiCell-X could involve, for example, analyses with a finer resolution (more voxels),
more substrates (within the cell microenvironment) and more cells. PhysiCell-X
enables the simulations of larger-scale models than those possible using the OpenMP-
only version of PhysiCell. These simulations will be used to identify performance
bottlenecks and development opportunities while employing PhysiCell-X as part of
PerMedCoE workflows, as in the Milestone MS13 part of Deliverable D3.4 [5].

ii) Replacing the current serial Thomas solver with a modified parallel solver.
Limitations to scalability caused by the use of a serial Thomas solver were identified
in Deliverable D1.1. Development work is currently underway to replace the serial
Thomas solver employed by PhysiCell with a modified hybrid Thomas solver [8]. This
new solver will be able to use openMP and MPI to solve the tridiagonal system of
equations of the Thomas solver in parallel. Following Amdhal’s law, this change is
expected to allow for much better scalability.

iii) Evaluating inhomogeneous 1-D partitioning as a method to improve cell load
balancing. For example, in the case of a spheroid, corner processes have a much
smaller number of cells and this can be improved by shifting subdomain boundaries.
Because this may adversely affect the diffusion solver as the number of voxels in the
process increases, a heuristic needs to be created to balance the work required to
compute voxels and cells.

iv) Considering alternative domain partitioning methods to increase the scalability of
the code. We are studying methods that may improve the scalability of PhysiCell-X,

D1.2 Software best practices and optimisation interim report
Version 1.0

9

such as work-aware domain partitions, memory-aware domain partitions and 3D
domain partitions. The use of these methods could circumvent some optimisation
drains that we have detected with current code.

v) Exploring the incorporation of GPU support for solving diffusion equations. Support
for different GPU architectures is a matter under discussion as a long-term
development goal for PhysiCell-X. To meet this goal, it would be necessary to evaluate
the performance advantages of having selected functions running on GPUs. As an
example of a function that could be refactored for GPUs, the diffusion solver is
launched 60 times before each evaluation of a cell-specific phenotype. An in-depth
exploration would initially be required to assess current performance issues before
committing to refactoring the code to confirm that GPUs would help tackle
bottlenecks that are otherwise impossible to solve. An objective of PerMedCoE is to
obtain a better sense of the performance drains of PhysiCell-X and the usefulness of
GPU refactoring during the second half of the project. Similar projects in the field will
be evaluated to check whether it is possible to adapt existing code or, at least, be
inspired by previously published research (see e.g. [9]).

vi) Integrating PhysiCell-X with MaBoSS. One of the expansions of PhysiCell-X involves
combining it with the MaBoSS library (PhysiBoSS-X). This has already been achieved
and PhysiBoSS-X is currently under testing using a spheroid-tumour necrosis factor
experiment (details in [10]).

3.2 MaBoSS

3.2.1 Application optimisation

i) Improvement of POSIX threads implementation. MaBoSS simulations work by
computing probabilities over a large number of individual simulations, making it an
embarrassingly parallel problem. Support for parallel computation using POSIX
threads was already implemented in prior versions. However, the final aggregation of
results from individual threads was done sequentially, resulting in worse
performances for a large number of threads. A new aggregation method has been
implemented which allows results to be gathered in parallel, allowing the aggregation
to scale logarithmically with the number of threads.

ii) Development of MPI parallelisation. A new level of parallelism has been
implemented, allowing MaBoSS to run simulations on multiple HPC nodes, using MPI.
It allows very efficient distribution of the computation load, without suffering from
the memory bottleneck. The size of results which is passed between nodes is relatively
small, and is not dependent on the number of individual simulations. With this new
functionality, MaBoSS can scale to a very large number of individual simulations, which
is crucially needed for getting precise results on very large models.

iii) Memory improvements. While improving the support for parallel computation in
MaBoSS, inefficiencies were identified that resulted in the production of large data
structures that appeared unnecessary. These methods were optimised to only

D1.2 Software best practices and optimisation interim report
Version 1.0

10

generate the data structure when needed, vastly reducing the memory usage of most
MaBoSS simulations.

iv) Compatibility with community standards. MaBoSS uses a proprietary format to
describe Boolean models. While a specialised package of the SBML modelling
language (SBML-qual) has been developed to describe boolean models, this standard
is not yet fully compatible with MaBoSS models due to the lack of description of
(in)activation rates. SBML-qual can, however, still be used to represent simple MaBoSS
models, with default values for rates. Previously, external software (GINsim, BioLQM)
has been required to convert these models to the MaBoSS format. To remove this
dependency on external software, direct support has been implemented for SBML-
qual models in MaBoSS, simplifying the simulation of large numbers of published
models. Support has also been implemented for another standard (Bnet format) to
further facilitate the interoperability between tools within the CoLoMoTo community
(http://colomoto.org).

v) WebMaBoSS: a web interface for MaBoSS modelling. MaBoSS simulations were
initially performed using the command line, which generates CSV files for simulation
results. While very robust, this was a limiting step for users. To simplify the use of
MaBoSS, simple Python bindings were developed to facilitate the simulations via
Python code, providing results as standard Pandas dataframes. The only drawback is
that a certain knowledge of Python is required. Even though it remains a very common
language, we perceived it was still difficult for non-computer scientists to get
introduced to MaBoSS modelling.To further improve the accessibility of MaBoSS to
users with limited programming experience,, a web interface (WebMaBoSS) was
developed [11]. This web interface allows users to easily import models from
databases (leveraging the new SBML-qual compatibility) and store them in a database.
Users can then easily modify them, simulate them, and obtain interactive figures to
browse results. The web interface is already used in courses on MaBoSS modelling and
has received positive feedback from students (including biologists, bioinformaticians,
or modellers). Another challenge that the web interface tackles involves simulations
of sensitivity analyses of MaBoSS models, gathering the outputs of a large number of
possible mutants. These analyses can potentially take a long time to run and need
special methods for the large resulting data sets to be analysed. To address this
challenge, a user-friendly interface was developed to create such analyses, which can
then run on the server of the web interface. Additionally, a filter is provided to search
for potentially interesting mutants. Access to WebMaBoSS could potentially be
extended to include computations performed on HPC. The web interface is available
on the MaBoSS website (https://maboss.curie.fr/webmaboss) and its source code is
available on GitHub (https://github.com/sysbio-curie/WebMaBoSS).

3.2.2 Adherence to software best practices

FAIR principles

Details on the adherence of MaBoSS to FAIR principles are provided in Table 2.

http://colomoto.org/
https://maboss.curie.fr/webmaboss
https://github.com/sysbio-curie/WebMaBoSS

D1.2 Software best practices and optimisation interim report
Version 1.0

11

Principle FAIR principle requirements Answer Further details

F (Findable) Formal tool release made
public on GitHub?

Yes Public repository: https://github.com/sysbio-
curie/MaBoSS-env-2.0

Further MPI version pending

 Dissemination of formal tool
releases

Not yet Further releases in the context of PerMedCoE
to be advertised on e.g. Twitter

A
(Accessible)

Is the core tool fully open-
source?

Yes Tool licence: BSD 3-Clause Licence

I
(Interopera
ble)

Singularity (Apptainer)
container available?

Yes Link to definition file:
https://github.com/PerMedCoE/MaBoSS_BB/b
lob/main/container/maboss.def

 If a Singularity container is
available, are dependencies
and auxiliary installations
version-controlled?

Ongoing In progress (versions to be defined, cross-
compared and harmonised between building
blocks)

 Are tool versions
systematically versioned (e.g.
Major.Minor.Patch) and
documented using a
changelog?

Yes Core software releases are semantically
versioned

R
(Reusable)

Test suite (e.g. brief test
code) available for each
release?

Yes Available in core tool GitHub repository

 Open-licence user
documentation available?

Yes https://maboss.curie.fr

https://pymaboss.readthedocs.io

 Benchmarking activities
completed or underway as
part of PerMedCoE Task 3.1

In
progress

Initial benchmarks available in Deliverable 3.3
[7]

Table 2. MaBoSS adherence to FAIR principles.

Requirements underlying software development

The MaBoSS development team is part of CoLoMoTo, a consortium for logical
modelling tools (http://www.colomoto.org), as well as SysMod (https://sysmod.info),
the Computational Modelling of Biological Systems community. The development
team also organises meetings every two years in Basel to discuss community-driven
guidelines for standards, annotations and curation of mathematical models, with an
emphasis on logical models. These meetings and conferences highlighted major needs

https://github.com/sysbio-curie/MaBoSS-env-2.0
https://github.com/sysbio-curie/MaBoSS-env-2.0
https://github.com/PerMedCoE/MaBoSS_BB/blob/main/container/maboss.def
https://github.com/PerMedCoE/MaBoSS_BB/blob/main/container/maboss.def
https://maboss.curie.fr/
https://pymaboss.readthedocs.io/en/latest/
http://www.colomoto.org/
https://sysmod.info/

D1.2 Software best practices and optimisation interim report
Version 1.0

12

of the community to reproduce, exchange and exploit models. Among these needs for
novel functionalities, the following three priority areas were identified:

• Standardisation of the models. This was selected as a priority development
target because MaBoSS was not directly compatible with the widely used
standard SBML-qual format.

• Optimisation of the performances of the model simulations. For this issue,
methods were sought to scale up simulations with models involving 50–100
nodes, leading to the first parallel implementation of MaBoSS using POSIX
threads.

• User-friendly web interface for users. This development target focused on
simplifying the use of Boolean models with MaBoSS without knowing the
details of the mathematical framework. An interface was developed where
models in SBML-qual format can be imported, run with MaBoSS and make use
of all the functionalities of MaBoSS (sensitivity analysis, drug simulations, etc.).
This interface is and will be used for teaching and as a support for any
published models, in support of activities to improve core tool usability and
access as part of PerMedCoE Work Package 2.

Commonalities and validation of functionality

A common element between development work focusing on MaBoSS versus other
PerMedCoE core software tools has involved the provision of MPI support. Moreover,
MaBoSS was initially developed as a standalone application, but its usage is moving
toward being a C++ library, used by other software. The first software to do so is
PhysiCell (Section 3.1), which now includes support for performing MaBoSS
simulations for intracellular models in the form of PhysiBoSS, an add-on of PhysiCell.
Recently, CompuCell3D (another agent-based framework) also started using the
library for simulating intracellular models.

While systematic cross-comparisons between the development version of MaBoSS
(with MPI compatibility) and prior versions of the software are yet to be completed,
initial functionality tests have demonstrated an ability to perform large simulations on
multiple nodes (with >90% parallel efficiency on eight nodes). MaBoSS is also being
evaluated by PoP, with results currently pending (see Section 5).

3.2.3 Scalability roadmap revisions

Updates and further tasks with reference to the scalability roadmap for MaBoSS
include:

i) Investigating the feasibility of exact simulations using GPUs. MaBoSS algorithm
simulates multiple continuous time Markov chains to compute approximate time-
dependent probabilities of Boolean states. The main advantage is that Boolean models
can be simulated without storing the full state transition graph (STG) in memory, and
thus permitting the simulation of large models. One application of MaBoSS, ExastoLog,

D1.2 Software best practices and optimisation interim report
Version 1.0

13

was developed to compute exact steady state probabilities using the full state
transition graph [12]. This method relies on linear algebra to compute the steady state
probabilities using the model STG, and its main bottleneck is the inversion of very large
matrices. The current method uses CPU to compute the inverse matrices, and in
theory could be improved by performing this operation on GPU. However, despite
using sparse matrices, the STG uses a very large amount of memory which, in practice,
limits the size of models to approximately 20 nodes (using a few GB of memory). For
each addition of a node in the model, the memory footprint of the STG is expected to
double. With such drastic constraints, we expect to quickly hit the limit of the GPU
memory, even for moderate-size models. An ongoing area of investigation involves
comparing the relative performance benefits (and limitations) of implementing this
new simulation algorithm on GPU versus those gained through improved support for
parallelism in MaBoSS.

ii) Further HPC compatibility improvements based on analytical bottleneck
identification. This work will be completed in collaboration with PoP (Section 4.2.2).

iii) Development of new Python bindings using Python C/C++ extensions. The present
version of Python bindings for MaBoSS is a wrapper around the MaBoSS binary
executable, which lets us easily modify the model, and run simulations. However, this
comes with two important issues. The first one is that a new parser is required to load
the model in memory, modify it, and then produce a new version of MaBoSS model
files. This leads to numerous incompatibilities between the MaBoSS C++ parser and
the Python parser. The other challenge is that, to load results into Python data
structures, CSV files produced by the MaBoSS binary must be parsed, which is costly
on large datasets. To tackle both of these issues, work is underway to develop a new
version of Python bindings using Python C/C++ extensions, enabling direct interaction
with the MaBoSS C++ library both for editing the model, and for producing results
directly into Python data structures (NumPy arrays and Pandas dataframes). We
expect to finalise the development of this new version of the Python bindings with the
extension as an internal module of the existing Python bindings, making it transparent
for the user.

iv) Using compressed data formats for storing MaBoSS simulation results. Currently,
simulation results are stored in CSV, a format which is simple to read, but costly to
store and to parse. A future goal is to investigate the use of compressed data formats,
including HDF5, Parquet or Feather, to efficiently store the simulation results. Using
formats such as these could facilitate the execution of large-scale models by saving
disk space. Further, because loading compressed data formats requires minimal post-
processing, their use is expected to afford a computational speed-up compared to
alternative data storage methods.

3.3 CellNOpt / CARNIVAL

3.3.1 Application optimisation

D1.2 Software best practices and optimisation interim report
Version 1.0

14

A key development step taken to upscale CellNOpt and CARNIVAL for use on HPC
platforms has involved employing an Ant Colony Optimisation (ACO) simulator with
MPI for async parameter fitting and OpenMP for inner parallelization of the simulator
needed to evaluate the solutions. The MPI-compatible ACO simulator can be used by
CellNOpt and CARNIVAL, with an ACO-compatible version of CARNIVAL having recently
been developed:

https://github.com/saezlab/permedcoe/tree/master/containers/parallel-solvers

One of the main issues of the tools was the time needed to train the models to data,
which compounds also with the number of samples to analyse. Also, since the models
are usually not identifiable, there are many optimal solutions that can explain the
observed data in the same way. The advantage of the new solver is twofold: first, it
splits the parameter fitting across nodes that evolve in parallel, so they can find
alternative solutions as they start for different random initializations. These tasks need
to run the simulator to evaluate how good a proposed solution is and to change it
accordingly. Thanks to the OpenMP version of the simulator, the evaluation of
candidate solutions is also done in parallel exploiting shared-memory parallelism.

Further, we extended the functionality of the old CARNIVAL R by adding bindings for
integration with the commercial solver Gurobi (https://www.gurobi.com), which is
bound with MPI. This enables the exploitation of distributed memory parallelism for
the faster analysis of single/small samples whenever a valid licence of Gurobi is
available. This was integrated in the main stable branch for the R version of CARNIVAL
(https://github.com/saezlab/CARNIVAL).

3.3.2 Adherence to software best practices

FAIR principles

Details on the adherence of CellNOpt / CARNIVAL to FAIR principles are provided in
Table 3.

Principle FAIR principle
requirements

Answer Further details

F
(Findable)

Formal tool release
made public on GitHub?

Yes Public repositories:

https://github.com/saezlab/cellnopt (stable)

https://github.com/saezlab/permedcoe/blob/maste
r/containers/parallel-solvers/cellnopt.tar.gz
(experimental developments for WP1)

 Dissemination of formal
tool releases

Not yet Will be announced on Twitter once the tool is stable
enough for end-users

https://github.com/saezlab/permedcoe/tree/master/containers/parallel-solvers
https://www.gurobi.com/
https://github.com/saezlab/CARNIVAL
https://github.com/saezlab/cellnopt
https://github.com/saezlab/permedcoe/blob/master/containers/parallel-solvers/cellnopt.tar.gz
https://github.com/saezlab/permedcoe/blob/master/containers/parallel-solvers/cellnopt.tar.gz

D1.2 Software best practices and optimisation interim report
Version 1.0

15

A
(Accessibl
e)

Is the core tool fully
open-source?

Yes Tool licence: GPLv3 (except commercial solvers, see
Section 3.3.1)

I
(Interoper
able)

Singularity (Apptainer)
container available?

Yes Links to definition file:

https://github.com/saezlab/permedcoe/blob/maste
r/containers/saez-tools/saeztools.singularity
(CellNopt R stable)

https://github.com/saezlab/permedcoe/blob/maste
r/containers/parallel-solvers/signaling-
solvers.singularity (Parallel CellNopt, experimental)

 If a Singularity container
is available, are
dependencies and
auxiliary installations
version-controlled?

Ongoing In progress (versions to be defined, cross-compared
and harmonised between building blocks)

 Are tool versions
systematically versioned
(e.g. Major.Minor.Patch)
and documented using a
changelog?

Yes / in
progress

Core software releases are semantically versioned
and documented using a changelog:
https://www.bioconductor.org/packages/release/bi
oc/html/CellNOptR.html

A similar approach to versioning and documentation
will be applied to the new development versions for
CellNopt and CARNIVAL

R
(Reusable)

Test suite (e.g. brief test
code) available for each
release?

In
progress

N/A

 Open-licence user
documentation
available?

Yes Available in core tool GitHub repository (for stable
version):

https://bioconductor.org/packages/release/bioc/vig
nettes/CARNIVAL/inst/doc/CARNIVAL.html

https://saezlab.github.io/CellNOptR/

 Benchmarking activities
completed or underway
as part of PerMedCoE
Task 3.1

Yes Initial benchmarks available in Deliverable 3.3 [7]

Table 3. CellNOpt / CARNIVAL adherence to FAIR principles.

Requirements underlying software development

CellNOpt / CARNIVAL development activities have been motivated by the following
requirements and desired features:

https://github.com/saezlab/permedcoe/blob/master/containers/saez-tools/saeztools.singularity
https://github.com/saezlab/permedcoe/blob/master/containers/saez-tools/saeztools.singularity
https://github.com/saezlab/permedcoe/blob/master/containers/parallel-solvers/signaling-solvers.singularity
https://github.com/saezlab/permedcoe/blob/master/containers/parallel-solvers/signaling-solvers.singularity
https://github.com/saezlab/permedcoe/blob/master/containers/parallel-solvers/signaling-solvers.singularity
https://github.com/saezlab/permedcoe/blob/master/containers/parallel-solvers/signaling-solvers.singularity
https://www.bioconductor.org/packages/release/bioc/html/CellNOptR.html
https://www.bioconductor.org/packages/release/bioc/html/CellNOptR.html
https://bioconductor.org/packages/release/bioc/vignettes/CARNIVAL/inst/doc/CARNIVAL.html
https://bioconductor.org/packages/release/bioc/vignettes/CARNIVAL/inst/doc/CARNIVAL.html
https://saezlab.github.io/CellNOptR/

D1.2 Software best practices and optimisation interim report
Version 1.0

16

• Improved scalability for analyses of large networks. Development targets with
reference to this topic have included exploitation of shared-memory and
distributed memory strategies.

• Improved portability and ease of compilation. Having a simulator implemented
in C++ instead of an R version would make it possible to compile CellNOpt /
CARNIVAL for specific architectures. Distribution of the software would also be
improved through the introduction of fewer dependencies and decreased
binary sizes.

Commonalities and validation of functionality

CellNOpt can be integrated with MaBoSS to perform continuous simulations with
Boolean formalism. Similar to other PerMedCoE tools, support for parallel
computation has been introduced via OpenMP and MPI support.

To validate results obtained using new versions of the CellNOpt simulator featuring a
parallel solver, comparisons have been performed with the previous version with
different test cases as a benchmark.

3.3.3 Scalability roadmap revisions

Updates and further tasks with reference to the scalability roadmap for
CellNOpt/CARNIVAL include implementing:

i) A lightweight Python-based version of CARNIVAL including an out of the box open-
source solver (COIN-OR branch and cut solver). Support for several non-proprietary
solvers (including e.g. SCIP and GLPK) has also been implemented to facilitate the
deployment of CARNIVAL on multiple HPC environments with different configuration
requirements and licences:

https://github.com/saezlab/permedcoe/tree/master/carnivalpy

ii) Extensions for parallel knockout analysis for generation edge essentiality, and
parallel permutation analysis with CARNIVAL. These extensions can directly benefit
from new parallelised strategies. The idea of the former is to parallelise the knockout
of selected nodes and edges to recover alternative solutions that are still optimal,
identifying which parts of the contextualised network are more variable. The latter
extension will work on reconstructions in parallel of permuted data in order to
estimate the distribution of the null hypothesis for statistics of interest. Both steps can
be performed in parallel.

3.4 COBREXA

3.4.1 Application optimisation

Application development steps related to COBREXA [13] have included implementing
a flexible parallelisation pipeline for small subtasks of the analysis process and
developing approaches to minimise the task distribution overhead and latency. The

https://github.com/saezlab/permedcoe/tree/master/carnivalpy

D1.2 Software best practices and optimisation interim report
Version 1.0

17

implementation of the parallelization framework directly into the logic of the analysis
in the package distinguishes COBREXA from other implementations of the constraint-
based modelling methodology. High-level design of data-structures and analysis
functions that are open for composition enable users to create analysis functions that
are “parallel by default” and HPC-enabled from the beginning without any extra effort.
This is a stark contrast to the current state of art, where the parallelisation is usually
added to the packages as a challenge-driven afterthought, and only few methods are
parallelised (typically, flux variability analysis). Despite the general, simple-looking
design, the performance of the constructed analyses is competitive with or better than
the performance of other highly optimised single-purpose specialised software
packages. Initial benchmarking results for this work are discussed in Section 4.4.1. A
further development step has involved implementing support for preloading
precompiled Julia code to reduce the time required during HPC task startup.

3.4.2 Adherence to software best practices

FAIR principles

Details on the adherence of COBREXA to FAIR principles are provided in Table 4.

Principle FAIR principle requirements Ans
wer

Further details

F (Findable) Formal tool release made
public on GitHub?

Yes Public repository:

https://github.com/LCSB-BioCore/COBREXA.jl

 Dissemination of formal tool
releases

Yes Dissemination activities:

Julia packaging
https://juliahub.com/ui/Packages/COBREXA/Uq4
VT

Bio.tools https://bio.tools/cobrexa.jl

A
(Accessible)

Is the core tool fully open-
source?

Yes Tool licence: Apache 2.0

I
(Interopera
ble)

Singularity (Apptainer)
container available?

Yes Link to definition file: https://github.com/LCSB-
BioCore/COBREXA.jl/blob/master/cobrexa.def

The container building and distribution is fully
automated using CI/CD.

 If a Singularity container is
available, are dependencies
and auxiliary installations
version-controlled?

Yes External dependencies are controlled using
standard version bounds. Additional testing is
required to discover potential additional
incompatibilities among current HPC facilities.

https://github.com/LCSB-BioCore/COBREXA.jl
https://juliahub.com/ui/Packages/COBREXA/Uq4VT
https://juliahub.com/ui/Packages/COBREXA/Uq4VT
https://bio.tools/cobrexa.jl
https://github.com/LCSB-BioCore/COBREXA.jl/blob/master/cobrexa.def
https://github.com/LCSB-BioCore/COBREXA.jl/blob/master/cobrexa.def

D1.2 Software best practices and optimisation interim report
Version 1.0

18

 Further steps taken relation
to ensuring interoperability as
part of PerMedCoE workflows
(see D2.2 [3] for details)

Yes Automated CI checks for compatibility with
multiple environments, including some possible
PerMedCoE target environments.

 Are tool versions
systematically versioned (e.g.
Major.Minor.Patch) and
documented using a
changelog?

Yes Semantic versioning is required for Julia packages.

R
(Reusable)

Test suite (e.g. brief test code)
available for each release?

Yes Available, package is continuously tested, code
coverage is above 90%

 Open-licence user
documentation available?

Yes Reference documentation is built and published
automatically from code docstrings

Additional tutorials (currently 6 available) and
Jupyter notebooks (currently 9) are available
within the documentation:

https://lcsb-biocore.github.io/COBREXA.jl/stable/

 Benchmarking activities
completed or underway as
part of PerMedCoE Task 3.1

Ong
oing

COBREXA has been scrutinized against other
constraint-based analysis toolkits in Kratochvíl et
al [13]. Systematic benchmarking activities are
underway.

Table 4. COBREXA adherence to FAIR principles.

Requirements underlying software development

A key development requirement introduced by PerMedCoE has involved the need for
easy organisation of analysis of ensembles of large numbers of models of a specified
size. Further COBREXA development work concerning the design of the extensible
model type and modification system has been driven by an analysis of deficiencies in
current COBRA software toolboxes. Additional format compatibility requirements
have been identified with Heinrich-Heine Universität (Quantitative and Theoretical
Biology Institute, Ebenhöh group).

Commonalities and validation of functionality

The model modification and parallelization framework of COBREXA might be useful in
other model-centric analysis tools implemented in Julia. While older versions of
COBREXA do not exist, it has been shown to outperform previous software packages
in the COBRA ecosystem in terms of scalability [13]. Performance optimisation using
conventional profiling and performance measurement tools was a part of the
COBREXA development process, with the main results described in Kratochvíl et al.
[13].

https://lcsb-biocore.github.io/COBREXA.jl/stable/

D1.2 Software best practices and optimisation interim report
Version 1.0

19

3.4.3 Scalability roadmap revisions

Updates and further tasks with reference to the scalability roadmap for COBREXA
include:

i) Identifying options to solve non-linear models using constraint-free solvers. We have
tested that an approximate solution using smooth optimisation and error-
minimisation methods (available with arbitrary precision bound, with a tradeoff
between precision and performance) will be able to compete with traditional algebraic
solvers in terms of performance if massive parallelisation is available. At the same
time, linearity requirements are vastly relaxed for typical error-minimisation methods,
which opens ways for solving more complicated and interesting metabolic problems,
such as ones involving metabolic adjustments and thermodynamic laws.

ii) Exploring opportunities to solve large-scale models using GPU acceleration. The
error minimisation methods rely on well explored, easily parallelisable operations that
can be described e.g. with Sparse BLAS routines. The GPU implementation will be
accelerated either using cuBLAS or hipBLAS, and possibly further optimised by
customising the BLAS routines to exploit the specifics of metabolic data. If successful,
interesting results may be obtained from comparisons with parallel and GPU-based
versions of the traditional linear solvers, such as cuOSQP.

iii) Improving model storage and loading efficiency. The current implementation of
COBREXA does not allow for memory mapping using e.g. mmap for memory-mapped
file support. The approximate methods, on the other hand, allow for highly efficient
storage of the optimisation state, with reasonable cache efficiency expectations and
minimal serialisation overhead. This may be utilised to load the models and
optimisation states very quickly, and efficiently mirror the data from main storage to
main memory, parallel accelerator memory (such as GPU main memory), or to local
caches (register sets, shared memory of symmetric multiprocessors). Special support
might be needed for efficient storage of sparse stoichiometric matrices that is suitable
for the cache hierarchy and execution model of the parallel accelerators, to optimise
the occupancy of the individual compute units and minimise the amount of necessary
cacheline transfers.

iv) Model exchange and long-term archival methods. The currently utilised model
formats (e.g. SBML, JSON and MAT) do not easily store huge models (>1M reactions),
do not possess functionality for sharing model components or modifications of base
data, nor follow FAIR (Findable, Accessible, Interoperable, Reusable) guidelines for
data. On the contrary, we have already observed that alternative and specialised
storage and exchange methods provide significant improvement of loading
performance and decrease the model storage size. We will investigate alternative
storage and exchange formats (possibly based on ideas from linked data and RDF), and
possibly implement the appropriate serialisation functionality and format
documentation in case the investigation shows that some of the problematic areas
can be improved upon.

D1.2 Software best practices and optimisation interim report
Version 1.0

20

4. Preliminary core application efficiencies and
development areas

This section reports on updates concerning PerMedCoE core tool benchmarking
following the submission of Deliverable D1.1 [1], and core tool upscaling development
areas identified by PoP for PhysiCell. Collaborations with PoP in relation to the other
core tools are currently in progress (Section 5).

4.1 PhysiCell-X

4.1.1 Preliminary benchmarking results

Preliminary benchmarking tests using PhysiCell-X have demonstrated the potential to
apply the software to models comprising 2.5 million initial cells and over 1500
compute cores, representing a significant advance in scalability compared to OpenMP-
only implementations of PhysiCell.

A comparison of PhysiCell and PhysiCell-X on a single computing node showed an
overhead of up to 17% in PhysiCell-X. Even so, rather than having a faster tool for
executing single-node jobs, the aim of developing PhysiCell-X was to enable jobs using
as many nodes as possible to simulate set-ups that were not possible using PhysiCell.

4.1.2 Areas for development identified by PoP

While a PoP performance analysis has not been completed for PhysiCell-X, it has been
conducted for PhysiCell. The code used for PhysiCell only differs from that used by
PhysiCell-X in the domain decomposition of the diffusion solver. Thus, even though
performance analysis specific to PhysiCell-X are being planned, we are confident that
the lessons learned with PhysiCell (see Deliverable D1.1 [1]) will be translatable to
PhysiCell-X.

The analytical bottlenecks for PhysiCell identified in collaboration with PoP concern
three areas: memory allocation, load imbalance and instructions per cycle (IPC). The
memory allocation problem stemmed from the allocation and deallocation of memory
whenever accessing a cell’s memory vector. This caused a drop in frequency that was
solved when changing the memory allocation library from malloc to jemalloc (Fig. 1),
a library that emphasises fragmentation avoidance and scalable concurrency support.

The load imbalance was caused by an uneven distribution of the work among threads.
To contain this drain, we increased the amount of work so that idle workers could be
used to perform tasks. Technically, this was achieved by adding collapse clauses to
different nested for loops that used OpenMP. This change further improved the
speedup of the code (Fig. 1).

The IPC drop was due to the way in which PhysiCell stores the information of new cells
being generated (at the end of a vector) and the need to read this vector each time
the cell needs to integrate the forces from its neighbouring cells. Several ways to
implement memory-aware executions were explored, including using worksharing

D1.2 Software best practices and optimisation interim report
Version 1.0

21

methods, dynamic scheduling and executions with information on which voxels are
not empty. This improved the results of the original code, but not of the jemalloc +
collapse changes (Fig. 1).

Figure 1. PhysiCell’s speed-up according to the number of threads and the alteration
done on the code after PoP performance analysis.

Further to these results, PoP performance analyses of PhysiCell and PhysiCell-X are
being run in another computer cluster with Kunpeng 920 CPUs (ARM v8.1), with 64
cores each @ 2.6GHz. A comparative analysis of the performance results on
MareNostrum 4 and Kunpeng will be provided in the second half of the project.

4.2 MaBoSS

4.2.1 Preliminary benchmarking results

Preliminary benchmarking results have been obtained following improvements to:

• The existing version of MaBoSS (v2.4.0), in relation to POSIX thread
parallelisation and memory usage (see items i and v in Section 3.2.1). These
improvements are implemented in a new MaBoSS version (v2.5.0).

• A version of MaBoSS with support for parallel computing using MPI (see item
ii in Section 3.2.1). MPI support is also included in MaBoSS v.2.5.0 as an
optional feature specified when compiling the software.

i) Execution times of MaBoSS v2.5.0 versus v2.4.0. A comparison of execution times of
MaBoSS v2.5.0 and v2.4.0 using 1-32 cores and one million individual simulations
showed a considerable (5×) speed-up between the pre- and post-optimisation
versions, which is mostly due to optimised memory usage (Fig. 2).

D1.2 Software best practices and optimisation interim report
Version 1.0

22

Figure 2. Comparison of execution times between MaBoSS v2.4.0 (pre-optimisation)
and v2.5.0 (post-optimisation).

ii) Execution times for the MPI-compatible version of MaBoSS. A comparison of
execution times using 1-114 cores and a version of MaBoSS using a combination of
POSIX thread and MPI parallelism versus POSIX thread parallelism only is shown in Fig.
3. Compared to the POSIX-only version, using MPI afforded a further reduction in
execution times. Using 19 cores on six nodes, it was possible to reduce the simulation
time from 10000 seconds to 150 seconds (66× speedup, 58% parallel efficiency).

Figure 3. MaBoSS wall times using v2.5.0 without MPI support, (1-32 cores) or with
MPI support (19-114 cores, 1-6 nodes with 19 cores per node).

While the POSIX threads implementation had a large parallel cost due to memory
bandwidth (67% parallel efficiency on 32 cores), the MPI implementation showed a

D1.2 Software best practices and optimisation interim report
Version 1.0

23

very moderate reduction in parallel efficiency when using several nodes (99% on six
nodes while reserving 19 cores per node) (Fig. 4).

Figure 4. Parallel speed-up of MaBoSS. Results are shown for POSIX threads
parallelism (1-32 cores, left) and for MPI parallelism (1-6 nodes, right).

The MaBoSS benchmarking measurements described in this Deliverable were
performed on Intel Xeon Gold 6148 processors (27,5 MB cache, 2,40 GHz) with 192GB
Shared Memory, using Intel Omni-path Architecture and a BEEGFS file system, and
CentOS 7.

4.3 CellNOpt / CARNIVAL

4.3.1 Preliminary benchmarking results

The new CellNOpt C++ implementation with the ACO C++ solver with MPI/OpenMP
parallelisation support has been benchmarked using the LiverDREAM model available
on the Saez research group website:

https://saezlab.github.io/CellNOptR/5_Models%20and%20Documentation

In order to demonstrate the advantages of the new strategy in comparison with the
old genetic algorithm (GA) implemented in the original CellNOpt version, the
cumulative probability of obtaining the optimal solution for the LiverDREAM model
was determined in relation to the required search duration (Fig. 5).

https://saezlab.github.io/CellNOptR/5_Models%20and%20Documentation

D1.2 Software best practices and optimisation interim report
Version 1.0

24

Figure 5. Average cumulative probability distribution (100 runs) of obtaining the
optimal solution in the LiverDREAM challenge using CellNOpt, with a 1h max time

limit.

The benchmark was designed to measure the improvements of the new tool for both
shared-memory and distributed-memory parallelism. It should be noted that CellNopt
and CARNIVAL do not directly benefit from more simulations per unit of time, since
the simulation results do not change. However, faster simulations allow more
evaluations of different solutions and thus the ACO solver may be able to discover the
optimal solution faster, which is the ultimate purpose of the tools. For this reason, the
benchmark measures how fast this optimal solution can be reached, on average,
under different scalability settings.

The performance of the genetic algorithm and ACO were compared under different
settings in using the FinisTerrae-II HPC (Galicia Supercomputing Center, CESGA). Each
node has two Intel Haswell E5-2680v3 CPUs at 2.50 GHz, 12 cores per processor (24
cores per node), and 128 GB of RAM. The nodes follow a fat-tree topology connection
using InfiniBand FDR 56 Gbps. Jobs involving 1-24 nodes and 1-8 OpenMP threads
were used for benchmarking. For this benchmark, the GA algorithm was additionally
adapted to exploit OpenMP/MPI parallelism. The LiverDREAM model was also used to
evaluate the performance of CellNOpt over different combinations of node and thread
reservations. The new ACO algorithm with the refactored CellNopt C++ simulator
showed superior results even after adapting the old GA algorithm to be compared
using the same conditions (Fig. 6).

Figure 6. Preliminary benchmarks for CellNOpt with different threads/nodes. Results
on the left show the average objective value obtained for a given configuration of
threads/nodes for the ACO and GA algorithms. On the right, values correspond to

the proportion of times (%) over 100 runs where the algorithm obtained an optimal
solution.

D1.2 Software best practices and optimisation interim report
Version 1.0

25

4.4 COBREXA

4.4.1 Preliminary benchmarking results

Benchmarking results for the COBREXA.jl Julia package are available in Kratochvíl et al.
[13] and the associated supplementary material. Briefly, the performance of
COBREXA.jl was compared to that of COBRApy and the COBRA Toolbox on the multi-
node University of Luxembourg Iris cluster (https://hpc.uni.lu), using human
microbiota models available via the AGORA database [14]. Functionalities used for
benchmarking included flux variability analysis and the computation of production
envelopes created for 3-D grids in the flux space. Compared to COBRApy and the
COBRA Toolbox, flux variability analysis using COBREXA.jl was able to utilise more
computation resources, resulting in significant speed-ups gathered from distributed
computation (despite the introduced distributed processing overhead, we measured
over 4× speed-up on clusters as small as 256 CPU cores; see Fig. 7). Speed-ups in excess
of 10× were also observed for the production envelope functionality using multicore
parallelism, with multi-node parallelism providing further arbitrary speed-ups (Fig. 8).
Based on preliminary observations of the scaling trend (Fig. 7), we expect the
approach to work reliably for much larger models and model ensembles. A surprising
amount of computational overhead was removed simply by choice of the high-
performance computational environment, as seen e.g. in the JSON model loading
benchmark (Fig. 9).

Figure 7. Performance of the distributed flux variability analysis (FVA)
implementation in COBREXA compared to maximal scalability achievable with
COBRApy (reported as computation time, lower is better.) Community size is

measured in organisms, each organism contains on average around 2000 reactions.

https://hpc.uni.lu/

D1.2 Software best practices and optimisation interim report
Version 1.0

26

Figure 8. Performance and scalability of production envelope computation (in values
computed per time, higher is better). The result shows mainly the easy applicability

of the parallel-first design of COBREXA to many types of analyses, which would
otherwise need to be parallelised manually with custom code (as in the case of

COBRApy).

Figure 9. Performance of JSON model loading in COBREXA compared to COBRApy
(reported as loading time, lower is better). The improvement is partly a result of

utilising the high–performance computing environment of Julia, and partly an
outcome of efficiency optimisations that avoid unnecessary internal conversions of

model formats.

COBREXA.jl was found to be robust against parallelisation overhead when performing
multinode analyses involving mid-size models (50 organisms / 100k reactions). The
methods scale to larger models (we have successfully tested solving the models of the
complete AGORA microbiome data set of > 1.5M reactions). Benchmarking of the very
large models is currently planned. Future benchmarking will focus mainly on technical

D1.2 Software best practices and optimisation interim report
Version 1.0

27

aspects of the data processing (especially the storage and communication overhead,
as described in Section 3.4.3. iii & iv), and on alternative approaches to model
optimisation (Section 3.4.3. i).

D1.2 Software best practices and optimisation interim report
Version 1.0

28

5. Conclusions and future tasks
The software optimisation reports and benchmarking results presented in this
Deliverable, along with scalability roadmap revisions and a follow-up survey of best-
practice guideline implementation, provide an up-to-date overview of core software
development activities within PerMedCoE. Based on work undertaken to date, the
following conclusions can be drawn:

• Scalability improvements have been achieved for all PerMedCoE core
applications. Further to tool-specific solutions, MPI integration has been
critical to improving the HPC compatibility of the modelling tools.

• Steps have been taken to ensure FAIR principle adherence for all core
applications. Where proprietary extensions are used (e.g. as in the case of the
Gurobi solver used by CARNIVAL), the use of non-proprietary alternatives has
been implemented.

• There is demonstrable potential for integrating different core applications and
examples of this have successfully been completed as part of PerMedCoE (e.g.
through the development of PhysiBoSS).

• Additional scalability roadmap targets have been identified for each core
application, to further improve their HPC readiness.

• Performance and scalability benchmarking, including collaboration with PoP, is
ongoing. During the second half of PerMedCoE, efforts will be directed to
establish a common testing framework for tool benchmarking, validation and
comparisons.

Future tasks related to software optimisation, best-practice implementation and
benchmarking include:

• Exploring and implementing further features as outlined in the scalability
roadmap updates reported in this Deliverable.

• Further stress testing to identify the scalability limits of HPC-optimised core
software tools.

• Functionality cross-checks of development versions against previously
established versions (e.g. MPI implementation of MaBoSS vs a non-MPI
implementation, and PhysiCell-X vs PhysiCell).

• PoP collaborations for CellNOpt / CARNIVAL, COBREXA and MaBoSS, e.g. for
the identification of key analytical bottlenecks.

• Ensuring that core software tool versioning and configuration steps are
transparently implemented and harmonised between all PerMedCoE building
blocks and workflows.

D1.2 Software best practices and optimisation interim report
Version 1.0

29

6. Annex I: Software best practices follow-up
questionnaire template

Name of core tool: Tool name

Questionnaire completed by: Name + date

1. Adherence to FAIR principles

Principle FAIR principle
requirements

Answer Further details

F (Findable) Formal tool release
made public on GitHub?

Yes / No Public repository link: Link here (or
delete)

 Dissemination of formal
tool releases

Yes / No Dissemination activities: List in
bullet points (or delete)

A (Accessible) Is the core tool fully
open-source?

Yes / No Tool license: License here

If No, details on why not,
otherwise delete

I
(Interoperable)

Singularity (Apptainer)
container available?

Yes / In
progress

Link to definition file: Link here (or
delete)

Can be core tool repository,
ultimately should also be

discoverable under PerMedCoE
organisation in building block

repository

 If a Singularity container
is available, are

dependencies and
auxiliary installations
version-controlled?

Yes / No

 Further steps taken
relation to ensuring

interoperability as part
of PerMedCoE

workflows (see D2.2 [3]
for details)

N/A Details here, e.g. cross-
comparisons of Singularity

definition files to ensure common
library versions

 Are tool versions
systematically versioned
(e.g. Major.Minor.Patch)

Yes / No

D1.2 Software best practices and optimisation interim report
Version 1.0

30

and documented using a
changelog?

R (Reusable) Test suite (e.g. brief test
code) available for each

release?

Yes / In
progress

E.g. “Available in core tool GitHub
repository”

 Open-licence user
documentation

available?

Yes / In
progress

E.g. “Available in core tool GitHub
repository”

 Benchmarking activities
completed or underway
as part of PerMedCoE

Task 3.1

Yes / No Details where possible, links to
relevant info, e.g. “New

benchmarks available in D1.2” (and
other Milestones / Deliverables

where reported or planned

2. Requirement analysis

Brief description of steps taken to identify needs, lacks and desired functionalities of
the core tool in the context of PerMedCoE:

Answer here, can use bullet points

(Note: Technicalities related to these can be described in D1.2, this section should
instead provide a short summary of how those needs / required functionalities were
identified)

3. Identification of commonalities

Does the core tool employ features, functionalities or general sets of code that could
be reused across the entire PerMedCoE tool collection (or a subset of it)?

Answer here (+ links where relevant)

Has the tool already employed solutions (e.g. for parallelisation) that are, to your
knowledge, already used as part of other PerMedCoE core tools?

Answer here (+ links where relevant)

4. Validation of tool functionality

Further to performance benchmarking (details in e.g. D1.1 and D1.2), have results
obtained using the latest core tool version been compared with those produced using
older versions?

Answer here

D1.2 Software best practices and optimisation interim report
Version 1.0

31

Have users external to the PerMedCoE project used or evaluated the latest core tool
version? If not, have relevant third-party groups been identified who could provide
feedback on newly developed features?

D1.2 Software best practices and optimisation interim report
Version 1.0

32

Acronyms and Abbreviations

- ACO: Ant colony optimisation
- CI/CD: Continuous Integration/Continuous Delivery
- D: Deliverable
- FVA: Flux variability analysis
- GA: Genetic algorithm
- GPU: Graphics processing unit
- IPC: Instructions per cycle
- JSON: JavaScript Object Notation
- MS: Milestone
- PoP: Performance Optimisation and Productivity
- RDF: Resource Description Framework
- SBML: Systems biology markup language

D1.2 Software best practices and optimisation interim report
Version 1.0

33

References

1. PerMedCoE Deliverable 1.1: Roadmap of software scalability to pre-exascale,
extension processes and best practices for software development

2. PerMedCoE Milestone 05: Roadmap on core applications’ needs for pre-
exascale optimisation

3. PerMedCoE Deliverable 2.2: Midterm code release

4. PerMedCoE Deliverable 1.3: Midterm tools release

5. PerMedCoE Deliverable 3.4: Use Case progress reports

6. Saxena G, Ponce-de-Leon M, Montagud A, Vicente Dorca D, Valencia A. (2021)
BioFVM-X: An MPI+OpenMP 3-D Simulator for Biological Systems. In:
Cinquemani E, Paulevé L (eds) Computational Methods in Systems Biology.
CMSB 2021. Lecture Notes in Computer Science, vol 12881. Springer, Cham.
DOI:10.1007/978-3-030-85633-5_18

7. PerMedCoE Deliverable 3.3: First PerMed technology observatory release and
benchmark report

8. Kim KH, Kang JH, Pan X, Choi JI. (2021) PaScaL_TDMA: A library of parallel and
scalable solvers for massive tridiagonal systems. Computer Physics
Communications 260: [107722]. DOI:10.1016/j.cpc.2020.107722

9. Stack M, Macklin P, Searles R, Chandrasekaran S. (2021) OpenACC acceleration
of an agent-based biological simulation framework. DOI:
10.48550/arXiv.2110.13368

10. Ponce-de-Leon M, Montagud A, Akasiadis C, Schreiber J, Ntiniakou T,
Valencia A. Optimizing dosage-specific treatments in a multi-scale model of a
tumor growth. DOI: 10.1101/2021.12.17.473136

11. Noël, V., Ruscone, M., Stoll, G., Viara, E., Zinovyev, A., Barillot, E., &
Calzone, L. (2021). WebMaBoSS: a web interface for simulating Boolean
models stochastically. Frontiers in Molecular Biosciences 8: 754444.
DOI:10.3389/fmolb.2021.754444

D1.2 Software best practices and optimisation interim report
Version 1.0

34

12. Koltai M, Noël V, Zinovyev A, Calzone L, Barillot E. (2020). Exact solving
and sensitivity analysis of stochastic continuous time Boolean models. BMC
Bioinformatics 21(1): 1-22. DOI:10.1186/s12859-020-03548-9

13. Kratochvíl M, Heirendt L, Wilken SE, Pusa T, Arreckx S, Noronha A, van
Aalst M, Satagopam VP, Ebenhöh O, Schneider R, Trefois C, Gu W. (2022)
COBREXA.jl: constraint-based reconstruction and exascale analysis.
Bioinformatics 38(4): 1171-1172.DOI:10.1093/bioinformatics/btab782

14. Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A,
Greenhalgh K, Jäger C, Baginska J, Wilmes P, Fleming RMT, Thiele I. (2017)
Generation of genome-scale metabolic reconstructions for 773 members of
the human gut microbiota. Nature Biotechnology 35: 81–89.
DOI:10.1038/nbt.3703

	1.1. Change Log
	Table of contents
	1. Executive Summary
	2. Introduction
	2.1 Deliverable background and aims
	2.2 Relation to other Deliverables and Milestones

	3. Application optimisation, best practices and scalability roadmap updates
	3.1 PhysiCell-X
	3.2 MaBoSS
	3.3 CellNOpt / CARNIVAL
	3.4 COBREXA

	4. Preliminary core application efficiencies and development areas
	4.1 PhysiCell-X
	4.2 MaBoSS
	4.3 CellNOpt / CARNIVAL
	4.4 COBREXA

	5. Conclusions and future tasks
	6. Annex I: Software best practices follow-up questionnaire template

	Acronyms and Abbreviations
	References

