

D2.2 Midterm code release
Version 1.0

Contract Number 951773

Project Website http://www.permedcoe.eu/

Contractual Deadline M18, March 2022

Dissemination Level PU

Nature R

Author(s)
Jesse Harrison (CSC), Javier Conejero (BSC),
Jesús Gorroñogoitia (ATOS), Pablo Rodríguez-
Mier (UKHD)

Contributor(s) -

Reviewer(s) Miguel Vazquez (BSC), Sampo Sillanpää (CSC)

Keywords Infrastructure tooling, building blocks,
workflows, machine learning

Notice: The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation

programme under grant agreement No “951773”.

 2020 PerMedCoE Consortium Partners. All rights reserved.

D2.2 Midterm code release
Version 1.0

2

Version Author Date Description of Change

V0.1 Jesse Harrison 01 March
2022

Initial draft

V0.2 Jesse Harrison 18 March
2022

Version incorporating feedback from reviewers

V1.0 Jesse Harrison 30 March
2022

Minor changes to repository access details

 (Final Change Log entries reserved for releases to

the EC)

D2.2 Midterm code release
Version 1.0

3

Table of contents

Table of contents ... 3

1. Executive Summary ... 4

2. Introduction .. 5

3. General infrastructure tooling for building blocks and workflows 6

3.1. Software containerisation and access to core tool image files 6

3.2. Building block development .. 6

3.3 Exploration of machine learning methods ... 8

3.4 Adherence to software best practices.. 13

3.5 Croupier implementation ... 14

4. Available building blocks and use-case workflows ... 18

4.1 Existing building blocks ... 18

4.2 Existing use-case workflows ... 18

5. Conclusions and future tasks .. 19

Annex I: Roadmaps and design choices made during Year 1 21

Acronyms and Abbreviations ... 30

References ... 31

D2.2 Midterm code release
Version 1.0

4

1. Executive Summary
This Deliverable presents an overview of PerMedCoE activities during Year 1 in relation
to solutions for infrastructure tooling (including software containerisation, building
block and workflow development), adherence of building blocks and workflows to
best software practices identified in Deliverable 1.1, and available user documentation
including a catalogue of existing building blocks and workflows. Further, the
Deliverable discusses steps taken to explore machine learning methods as part of
PerMedCoE during the first half of the project, and presents updated general design
choice recommendations for building block and workflow development.

D2.2 Midterm code release
Version 1.0

5

2. Introduction
Tasks undertaken within PerMedCoE Work Package 2 involve packaging HPC-
optimised and containerised core software tools as building blocks designed to
perform specific functionalities. By providing end-users with a standardised interface
to execute individual building blocks and combine building blocks into workflows, it is
possible to address diverse use cases of interest to researchers and practitioners
within the field of personalised medicine. The optimisation and containerisation of
core software tools take place as part of PerMedCoE Work Package 1, with example
use cases addressed by different building blocks and workflows defined in Work
Package 3. Further tasks addressed by Work Package 2 include formulating design
choices for building blocks and the integration of core software tools as part of use-
case workflows, improving the scalability and interoperability of workflows over
different HPC platforms, and providing tools to improve the usability of and access to
the PerMedCoE infrastructure.

In support of Work Package 2 activities during Year 1 of the PerMedCoE project, the
present Deliverable provides:

• Summaries of infrastructure tooling solutions to date

• Details on the adherence of PerMedCoE building blocks and workflows to the
software best-practice guidelines described in Deliverable 1.1 [1]

• A current catalogue of building blocks and use-case workflows with links to
user documentation and development code

• A synthesis of recommendations for the construction and execution of building
blocks and workflows (Annex I)

As part of the midterm code release and in support of information provided in the
Deliverable report, general user documentation has been made available on the
PerMedCoE readthedocs website:

https://permedcoe.readthedocs.io

Detailed user documentation and code specific to building blocks and use-case
workflows are provided under the PerMedCoE GitHub organisation:

 https://github.com/PerMedCoE

https://permedcoe.readthedocs.io/
https://github.com/PerMedCoE

D2.2 Midterm code release
Version 1.0

6

3. General infrastructure tooling for building
blocks and workflows

This section summarises the infrastructure tooling solutions designed and employed
as part of the building block and workflow activities during Year 1 of the PerMedCoE
project. Wider documentation on building block design choices is available in Annex I
of the Deliverable.

3.1. Software containerisation and access to core tool image files

Following design choices discussed in Section A2 of Annex I, existing PerMedCoE
building blocks (Section 4.1) use Singularity containers for core software execution.
Note that Singularity has recently been renamed to Apptainer (https://apptainer.org).
For clarity, we still use the term Singularity in this document. Singularity definition files
provide a transparent and reproducible format for documenting software installation
and configuration steps, with public access to Singularity definition files for
PerMedCoE core software being described in Deliverable D1.2 [2]. A survey of
different HPC platforms involved in PerMedCoE, undertaken as part of Work Package
2 activities, has confirmed the availability of Singularity on most PerMedCoE-affiliated
host systems (Section A2.2.3 of Annex I).

Access to pre-built core Singularity images during Year 1 of the PerMedCoE project has
been limited to PerMedCoE tool developers, with image files hosted on the BSC
B2DROP service that is restricted to PerMedCoE partners (b2drop.bsc.es). During Year
2, public access to image files on GitHub will be supported via ORAS
(https://oras.land/cli). ORAS-enabled access to Singularity images is already
supported by the COBREXA core software, with user documentation on pre-built
images provided in the COBREXA GitHub repository:

https://github.com/LCSB-BioCore/COBREXA.jl#prebuilt-images

3.2. Building block development

General design choices for PerMedCoE building block development are outlined in
Section A2 of Annex I. Further to using Singularity for core software containerisation
(Section 3.1), implementing these choices in practice has involved the development
and deployment of a Python API for constructing building block and workflow
templates (Section 3.2.1), along with a unified command line interface for building
block and workflow execution (Section 3.2.2). Public access to existing PerMedCoE
building blocks is outlined in Section 4.1 of this Deliverable.

3.2.1. Python API for constructing building block and workflow templates

The permedcoe package provides the Python API necessary for the development of
building blocks within the PerMedCoE scope. It also provides a command line tool that
eases the creation of building blocks and workflows with templates. This package is
publicly available via the Pypi repository (https://pypi.org/project/permedcoe)

https://apptainer.org/
https://oras.land/cli/
https://github.com/LCSB-BioCore/COBREXA.jl#prebuilt-images
https://pypi.org/project/permedcoe/

D2.2 Midterm code release
Version 1.0

7

enabling its easy installation with pip, and in GitHub
(https://github.com/PerMedCoE/permedcoe).

The Python API provided by the permedcoe package comprises a set of decorators,
parameter type definitions and functions to be used in the building block
implementation
(https://permedcoe.readthedocs.io/en/latest/02_components/components.html#py
thon-api):

• The decorators enable one to define the functionality of the building block and
hide the container and execution complexities

• The parameter type definitions enable to declare the type of the building block
input and output parameters (e.g. files or directories)

• The functions provide helper functionalities to improve its operation

The available decorators are: @task, @mpi, @binary, @constraint and @container.
The @task decorator is used to specify that a function should be considered as a unit
of work and serves as the placeholder for parameter type definitions. A building block
usually comprises a single unit of work, but can be composed of more than one. The
@mpi or the @binary decorator can be placed over the @task decorator to define
that the unit of work is a MPI application or a binary application, and is the placeholder
for a particular binary. The @container decorator is used to define the container
where the unit of work will be executed. On top of all these decorators, @constraint
can be used to define specific requirements for the binary/MPI/task. This decorator is
specific to the PyCOMPSs workflow manager and is used to specify the task
requirements on HPC resources, such as the number of cores or amount of memory.
Other workflow managers specify this using their own mechanisms when calling the
building blocks.

The permedcoe base package also provides a command line interface which is able to
provide building block and workflow templates. User documentation for the
command line interface is available via the PerMedCoE readthedocs website:

https://permedcoe.readthedocs.io/en/latest/02_components/components.html#te
mplate-creation

More specifically, the building block template is the skeleton of a blank building block
with the structure of a Python package. It is ready to be deployed and used (with
dummy code including all decorators and parameter type definitions), so that the only
requirement from the building block developer is to complete its main file with the
desired functionality. This skeleton and building block structure are described in detail
in the documentation:

https://permedcoe.readthedocs.io/en/latest/04_creating/01_building_block_templa
tes/building_block_templates.html

https://github.com/PerMedCoE/permedcoe
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#python-api
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#python-api
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#template-creation
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#template-creation
https://permedcoe.readthedocs.io/en/latest/04_creating/01_building_block_templates/building_block_templates.html
https://permedcoe.readthedocs.io/en/latest/04_creating/01_building_block_templates/building_block_templates.html

D2.2 Midterm code release
Version 1.0

8

The application template additionally represents a blank application for a given
workflow manager (currently for PyCOMPSs, Snakemake and NextFlow templates,
which are the workflow managers considered within the scope of PerMedCoE), so that
the workflow developer can start importing and using the desired building blocks. This
either takes place from the command line interface using the Snakemake or Nextflow
managers, or using the PyCOMPSs Python interface. The relevant documentation is
provided in:

https://permedcoe.readthedocs.io/en/latest/04_creating/02_application_templates
/application_templates.html

Finally, the entire permedcoe package usage has been condensed in a step-by-step
tutorial that includes information ranging from building block creation to the workflow
execution:

https://permedcoe.readthedocs.io/en/latest/04_creating/04_tutorial/tutorial.html

3.2.2. Unified command line interface for building block and workflow execution

A unified command line interface for building block execution has been implemented
as part of the permedcoe base package, which is automatically exposed by all building
blocks. This interface has been established following guidelines described in Annex I
(Section A2.1.5). Consequently, a building block can be directly invoked from the
command line after its deployment with the building block name.

The permedcoe base package command line interface is further able to invoke
building blocks respecting the same interface as workflow applications:

https://permedcoe.readthedocs.io/en/latest/02_components/components.html#bui
lding-block-execution

https://permedcoe.readthedocs.io/en/latest/02_components/components.html#ap
plication-execution

3.3 Exploration of machine learning methods

3.3.1 Tasks targeted for machine learning toolbox development

Developing a machine learning toolbox for the PerMedCoE project is one of the tasks
of Work Package 2 (Task 2.1). Analytical tools and use case workflows have been
scoped to identify opportunities for using machine learning to improve their HPC
compatibility. Tasks and tools that have been identified as potential targets for
machine learning toolbox development during Years 2-3 of the PerMedCoE project are
outlined in Table 1.

https://permedcoe.readthedocs.io/en/latest/04_creating/02_application_templates/application_templates.html
https://permedcoe.readthedocs.io/en/latest/04_creating/02_application_templates/application_templates.html
https://permedcoe.readthedocs.io/en/latest/04_creating/04_tutorial/tutorial.html
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#building-block-execution
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#building-block-execution
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#application-execution
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#application-execution

D2.2 Midterm code release
Version 1.0

9

Analytical task Examples of AI/ML software or libraries Potential
PerMedCoE
use cases

Dimensionality reduction
(using e.g. unsupervised
ML)

Scvis (Ding et al. 2018 [3]); Python and/or R,
UMAP

All use cases

Approximate solution for
non-linear metabolic
systems that model
thermodynamics of
reactions

COBREXA (specialised solver relying on ML
methods, under development)

1, 4

Model trajectory analyses DEAP (https://deap.readthedocs.io) 4

Use of surrogate models PhysiCell 4, 5

Model parameter fitting DEAP and general hyperparameter
optimisation frameworks, e.g. ray tune
(https://docs.ray.io/en/latest/tune/index.htm
l), hyperopt
(http://hyperopt.github.io/hyperopt) and
optuna (https://optuna.org)

4, 5

Classification tasks (e.g.
classifying metabolic fluxes
to uncover possible cell
phenotypes)

TensorFlow (https://www.tensorflow.org),
Keras (https://keras.io), PyTorch
(https://pytorch.org)

1, 2

Diverse unsupervised and
supervised ML tasks for
PyCOMPSs workflows

dislib (https://github.com/bsc-wdc/dislib) All use cases

Matrix factorisation TensorFlow, Macau
(https://macau.readthedocs.io/en/latest/inde
x.html), JAX
(https://jax.readthedocs.io/en/latest)

2 (see Section
3.3.2 for
details)

Table 1. Analysis tasks and their relation to AI/ML software or libraries with potential
applications in PerMedCoE use cases.

https://deap.readthedocs.io/
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
http://hyperopt.github.io/hyperopt/
https://optuna.org/
https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://github.com/bsc-wdc/dislib
https://macau.readthedocs.io/en/latest/index.html
https://macau.readthedocs.io/en/latest/index.html
https://jax.readthedocs.io/en/latest
https://jax.readthedocs.io/en/latest

D2.2 Midterm code release
Version 1.0

10

3.3.2. Exploration of ML methods for analyses using CellNOpt / CARNIVAL

To date, the application of machine learning techniques has primarily been explored
with reference to using CellNOpt / CARNIVAL as part of PerMedCoE workflows. The
refactoring and/or extensions of CellNopt / CARNIVAL focus on the fast and scalable
generation of mechanistic models, from which functional features (e.g active or
inactive proteins, pathways or interactions) can be extracted from gene expression
data or (phospho)proteomics data. However, one important issue that needs to be
addressed is the translation of the output of these models to a relevant outcome of
interest.

This issue could be addressed by adding a ML step for learning a mapping function
from CellNOpt / CARNIVAL features to the response of interest. For this purpose, the
CellNOpt / CARNIVAL development team has evaluated the use of different ML
techniques and libraries to expand the capabilities of this software, focusing on three
main aspects: 1) scalability, 2) interpretability and 3) simplicity (lightweight, minimal
dependencies).

For preliminary evaluation, different systems were implemented based on
probabilistic matrix factorisation (using Macau), neural networks (using TensorFlow),
and matrix factorisation with gradient descent (using JAX). Macau [4] is a probabilistic
matrix factorisation method with side features, which is able to predict particular
responses with missing data (e.g. some drugs are only tested in some cells) and also
incorporating side information (e.g. drug and cell features) in order to make
predictions for unobserved drugs and cell lines. Although the performance is very
good in this setting, current implementation requires the use of a Gibbs sampler for
sampling the posterior distribution, which is slow, does not scale well and does not
support the use of GPUs. Another line of investigation has involved using Tensorflow
with Keras to build different neural network architectures. One issue with neural
networks is that the typical high-dimensional nonlinear functions that are learnt are
good for prediction but complex for interpretation. Although these libraries can also
be used to learn linear models, the code needed to replicate some basic matrix
factorisation and training with gradient descent is non-trivial. Further, the libraries are
heavy in terms of dependencies.

JAX was selected for further exploration of ML methodologies, since it met the specific
requirements set by PerMedCoE (see Table 1). Benefits of JAX in this context include:

• Use of XLA (a domain-specific compiler for linear algebra) to compile NumPy
programs on GPUs.

• Easy-to-define linear models with NumPy-like syntax

• Auto-differentiation of NumPy operations and some Python syntax

• Relatively lightweight (e.g. in comparison with TensorFlow)

D2.2 Midterm code release
Version 1.0

11

Using JAX, four different linear models of matrix factorisation for prediction of drug
responses on cell lines have been implemented (with this topic being of relevance to
PerMedCoE Use Case 2). The approach is similar to the Macau method but using a
deterministic method instead of a probabilistic one for better scalability.

Matrix factorisation for IC50 imputation

Assuming drug responses have only been measured for certain cell lines, this problem
is basically an imputation problem (predicting the missing drug responses). Given a
matrix of log(IC50) values where rows are drugs and cells are columns, this matrix can
be factorised as DTC where D and C are two low-rank matrices. Each log(IC50) value is
written as a linear combination of two latent vectors, one for drugs and one for cells.
The model can be extended to add a bias term for drugs (a column vector) and a bias
for cell lines (a row vector):

log(IC50) = DTC + bias_drugs + bias_cells

This is implemented in JAX in the following manner:

@jax.jit

def mf(params):

 LD, LC, ld_bias, lc_bias, mu = params

 Dt = jnp.transpose(jnp.add(LD, ld_bias))

 C = jnp.add(LC, lc_bias)

 return jnp.dot(Dt, C) + mu

Matrix factorisation using cell features

A goal of using machine learning methods as part of Use Case 2 is to employ features
from both drugs and cells. Using CARNIVAL / CellNopt, it is possible to identify
interesting features concerning altered signalling pathways for cell lines. In order to
incorporate this information, one can further decompose the latent cell matrix C, so
that each cell latent vector is a function of the cell features. This can be written as:

C = LC * CFT + bias_cells

Where LC is the latent matrix to be estimated and CF is the matrix with cell features:

@jax.jit

def mf_with_col_features(params, col_features):

 LD, LC, ld_bias, lc_bias, mu = params

 Dt = jnp.transpose(jnp.add(LD, ld_bias))

 C = jnp.add(jnp.dot(LC, jnp.transpose(col_features)), lc_bias)

 return jnp.dot(Dt, C) + mu

Matrix factorisation using drug features

D2.2 Midterm code release
Version 1.0

12

Something similar can be done in instances where drug features (e.g target genes of
the drugs) are available, but cell features are unavailable:

@jax.jit

def mf_with_row_features(params, row_features):

 LD, LC, ld_bias, lc_bias, mu = params

 D = jnp.add(jnp.dot(LD, jnp.transpose(row_features)), ld_bias)

 Dt = jnp.transpose(D)

 C = jnp.add(LC, lc_bias)

 return jnp.dot(Dt, C) + mu

Matrix factorisation using both cell and drug features

If both drug and cell features are available, it is possible to extend the model as
follows:

@jax.jit

def mf_with_features(params, row_features, col_features):

 LD, LC, ld_bias, lc_bias, mu = params

 Dt = jnp.transpose(jnp.add(jnp.dot(LD,

 jnp.transpose(row_features)), ld_bias))

 C = jnp.add(jnp.dot(LC, jnp.transpose(col_features)), lc_bias)

 return jnp.dot(Dt, C) + mu

After defining the different models, latent matrices can be estimated from the data,
using JAX autodiff capabilities to differentiate through the model given a loss function
(RMSE) between predicted log(IC50) values and observed ones. More details about
how the training is done are available in the following notebook:

https://colab.research.google.com/drive/134kuHCpJ3kOTDHyDMCXhYq1XKYOhhN9
h#scrollTo=MfL75o7cXaAz

A test container for exploiting this model is available via:

https://github.com/saezlab/permedcoe/tree/master/containers/ml-jax

Further, a building block was developed for using this approach together with other
developed building blocks (e.g CARNIVAL and CellNopt), which is available at:

https://github.com/saezlab/permedcoe/tree/master/building-
blocks/core/src/ml_jax_drug_prediction

The building block / Singularity container includes a way to test the performance of
the method with different settings using GDSC data, explained here:

https://github.com/saezlab/permedcoe/tree/master/building-blocks/core

https://colab.research.google.com/drive/134kuHCpJ3kOTDHyDMCXhYq1XKYOhhN9h#scrollTo=MfL75o7cXaAz
https://colab.research.google.com/drive/134kuHCpJ3kOTDHyDMCXhYq1XKYOhhN9h#scrollTo=MfL75o7cXaAz
https://github.com/saezlab/permedcoe/tree/master/containers/ml-jax
https://github.com/saezlab/permedcoe/tree/master/building-blocks/core/src/ml_jax_drug_prediction
https://github.com/saezlab/permedcoe/tree/master/building-blocks/core/src/ml_jax_drug_prediction
https://github.com/saezlab/permedcoe/tree/master/building-blocks/core

D2.2 Midterm code release
Version 1.0

13

3.4 Adherence to software best practices

According to the software best-practice guidelines described in Deliverable D1.1 [1],
software and code produced by PerMedCoE must, among other recommendations,
adhere to FAIR (Findable, Accessible, Interoperable, Reusable) principles. Adherence
of the PerMedCoE core software tools to these guidelines has been assessed based on
a follow-up questionnaire circulated among core tool developers, with summaries of
the questionnaire results provided in Deliverable D1.2 [2].

Actions to ensure the adherence of PerMedCoE building blocks and workflows to FAIR
principles during Year 1 are summarised in Table 2. Further steps to ensure the
compatibility of PerMedCoE building blocks and workflows with multiple HPC
infrastructures are outlined in Section A2 of Annex I. To date, building blocks and
workflows have been deployed on two platforms (BSC MareNostrum 4 and CSC
Mahti), with several development results presented in Deliverable D2.1 [5]. Further
cross-platform compatibility testing and follow-up work on ensuring adherence to
software best practices is planned for Years 2-3 of the project (Section 5).

The underlying motivation for the building block and workflow designs implemented
in PerMedCoE is to provide solutions that are:

• Portable and cross-compatible at multiple levels of organisation (ranging from
the level of individual tools and building blocks to workflows and, ultimately,
HPC platforms hosted by PerMedCoE partners)

• Expert-validated and error-free

• Composable and modular (facilitating the easy use and deployment of building
blocks as part of complex workflows)

To date, validation of the existing PerMedCoE building blocks has primarily focused on
those building blocks used in Use Case 5. Further validation work in relation to other
use cases is currently in progress, with Use Case 2 workflows already having been
successfully deployed on MareNostrum 4.

FAIR principle Actions concerning building blocks and workflows during Year 1

F (Findable) Provision of a general website for PerMedCoE user documentation

Catalogue of building blocks and workflows in the general PerMedCoE
user documentation

Establishing linkages between user documentation and GitHub
repositories for building blocks and workflows

Workflows for end users’ consumption searchable in the Croupier
frontend (marketplace)

D2.2 Midterm code release
Version 1.0

14

A (Accessible) Open licensing of building blocks and workflows (whenever possible
depending on the tools used within the building blocks and building
blocks used in the workflows)

Usage of GitHub repositories for source code storage and distribution

Development of a common CLI for building block and workflow
deployment, and template creation

Preparation of end-user documentation for building blocks and
workflows

Workflow execution for end users in the Croupier frontend

I (Interoperable) Usage of Singularity (Apptainer) containers for core software tool
packaging in building blocks

Compatibility of core software building blocks with auxiliary
applications (see definition of auxiliary applications in Section 2.1.3 of
Annex I) and between PerMedCoE use cases

Establishing support for multiple workflow managers (PyCOMPSs and
SnakeMake; initial development of support for NextFlow)

Development work to establish solutions for cross-infrastructure
workflow deployments using Croupier

R (Reusable) Open access to building block and workflow code under the
PerMedCoE GitHub organisation

(For details on access to core software-associated code, see Deliverable
D1.2 [2])

Multiple (based on different inputs) workflow execution from
Croupier’s frontend

Table 2. Steps taken during Year 1 of the PerMedCoE project to ensure adherence of
building blocks and workflows to FAIR principles.

3.5 Croupier implementation

Croupier is a meta-orchestrator or workflow manager (implemented as a plugin of the
Cloudify Cloud workflow manager1) that can distribute an application’s work tasks and
data across heterogeneous infrastructures, and in particular across HPC clusters for
execution (see Deliverable D2.1 [5]). Croupier enables i) application providers to
register their applications as workflows into the Croupier marketplace, and ii)
application consumers to browse existing applications, and execute them in target
HPC clusters with the input data they supply. See the Application Execution with

1 https://cloudify.co/

https://cloudify.co/

D2.2 Midterm code release
Version 1.0

15

Croupier section in PerMedCoE online documentation for additional information
about Croupier’s supported roles and their procedures:

https://permedcoe.readthedocs.io/en/latest/04_creating/03_croupier/croupier.htm
l

Note: in the following, by application we mean any Croupier workflow whose tasks
are executed by PyCOMPSs or Snakemake in the backend HPC infrastructures.

Since Deliverable D2.1 [5], some of Croupier’s features have been improved, and
others incorporated. Croupier’s code for PerMedCoE is available at the Croupier
GitHub repository:

https://github.com/ari-apc-lab/croupier/tree/permedcoe

The data management support for data transfer across infrastructures has been
redesigned and reimplemented, aiming for flexibility. Croupier supports HTTP transfer
between Cloud and HPC data sources and RSYNC transfer among HPC clusters.
Croupier also acts as a data proxy between those HPC clusters with external Internet
access disabled.

The Identity Access Management (IAM) has been improved. Croupier supports
declaring multiple Vault servers in workflows and uses the same mechanism to
retrieve access credentials for HPC clusters and data sources.

A complete Croupier framework, including KeyCloak for Single Sign On (SSO) user’s
authentication, Vault for secrets management, Cloudify/Croupier for workflow
execution, and the monitoring framework based on Prometheus and Grafana, for HPC
task monitoring, has been installed within a Kubernetes cluster in the Atos
infrastructure and is available at http://<service>.croupier.permedcoe.eu. For
instance, Cloudify/Croupier is available at:

http://cloudify.croupier.permedcoe.eu

In order to execute an application’s workflow, consumers must log themselves in
KeyCloak to get access to the Cloudify/Croupier frontend. Then, Croupier uses Vault
instances registered in the workflow to retrieve their credentials to get access to the
HPC infrastructures for task execution and data transfer, by using the token it gets
from Vault, which requests the KeyCloak JWT token. This mechanism only enables
Croupier to collect credentials for the logged user who has executed the workflow.
The Vault token is deleted after the credentials are retrieved and they are kept only in
memory for the time the workflow is being executed, reinforcing the credentials’
safekeeping.

Croupier can be used by PerMedCoE users to run applications from its web frontend.
Therefore, Croupier needs to be integrated with the PerMedCoE workflow managers
that are being run in the HPC clusters, namely PyCOMPSs and SnakeMake to distribute
an application’s tasks.

https://permedcoe.readthedocs.io/en/latest/04_creating/03_croupier/croupier.html
https://permedcoe.readthedocs.io/en/latest/04_creating/03_croupier/croupier.html
https://github.com/ari-apc-lab/croupier/tree/permedcoe
http://cloudify.croupier.permedcoe.eu/

D2.2 Midterm code release
Version 1.0

16

Croupier has been integrated with PyCOMPSs by using remote ssh access to its CLI.
For more information, see the PyCOMPSs usage documentation at:

https://pycompss.readthedocs.io/en/latest/Sections/08_PyCOMPSs_CLI/02_Usage.h
tml

Croupier follows the PyCOMPSs standard procedure to:

1. Deploy an instance of each application’s task in the user’s workspace of its HPC
cluster

2. Launch each application’s task in the HPC cluster where it has been deployed

3. Monitor periodically each scheduled application’s task inquiring for its
execution state. This is done by using the SLURM scheduler CLI.

4. Collect monitored data about the queuing and execution timing and the
resources consumed for each launched application’s task, which is aggregated
into a Grafana dashboard2.

Croupier distributes an application’s tasks according to the flow declared in the
application’s workflow, either sequentially or in parallel.

The usage of Croupier has been tested for launching workflows associated with Use
Cases 5 (COVID-19) and 2 (Drug Synergies) in MareNostrum4 (BSC). Moreover, the
Croupier task deployment support has been adopted to deploy both UCs in MN4 from
GitHub sources. For this, the application provider has to include the application
deployment script within the application blueprint artifacts. Setails on how the COVID-
19 workflow is declared for Croupier using the TOSCA specification are provided in the
Croupier section in the PerMedCoE online documentation.

The following code snippet (see next page) declares the main COVID-19 task:

job:

 type: croupier.nodes.PyCOMPSsJob

 properties:

 job_options:

 modules:

 - load singularity/3.5.2

 - use /apps/modules/modulefiles/tools/COMPSs/libraries

 - load permedcoe

 app_name: covid19

 app_source: permedcoe_apps/covid19/covid-19-workflow-

main/Workflow/PyCOMPSs/src

 env:

2 This feature will be integrated in the short term.

https://pycompss.readthedocs.io/en/latest/Sections/08_PyCOMPSs_CLI/02_Usage.html
https://pycompss.readthedocs.io/en/latest/Sections/08_PyCOMPSs_CLI/02_Usage.html

D2.2 Midterm code release
Version 1.0

17

 - PERMEDCOE_IMAGES: ${PERMEDCOE_IMAGES}

 - PERMEDCOE_ASSETS: ${PERMEDCOE_ASSETS}

 - dataset: $HOME/permedcoe_apps/covid19/covid-19-workflow-

main/Resources/data

 compss_args:

 num_nodes: { get_input: num_nodes }

 exec_time: { get_input: exec_time }

 log_level: 'off

 graph: true

 tracing: 'false'

 python_interpreter: python3

 qos: debug

 app_file: '$(pwd)/covid19_pilot.py'

 app_args: { get_input: covid19_args }

 deployment:

 bootstrap: "scripts/deploy.sh"

 revert: "scripts/revert.sh"

 hpc_execution: false

 relationships:

 - type: task_managed_by_interface

 target: hpc

 - type: input

 target: data_small

 - type: output

 target: covid_results

 - type: deployment_source

 target: github_data_access_infra

This task, declared by the COVID-19 application provider, needs to be fed with the
consumer’s inputs (those obtained with the get_input function in the task definition)
for execution. The job_options property of the task (of type PyCOMPSsJob) collects
the different inputs required by PyCOMPSs for task deployment and execution,
including required modules, application sources, PyCOMPSs parameters and
application parameters.

Plans for future work concerning the Croupier implementation for PerMedCoE are
described in Section 5.

D2.2 Midterm code release
Version 1.0

18

4. Available building blocks and use-case
workflows

4.1 Existing building blocks

A list of available building blocks, along with general building block descriptions, is
available on the PerMedCoE readthedocs website:

https://permedcoe.readthedocs.io/en/latest/03_existing/01_available_building_blo
cks/available_building_blocks.html

All PerMedCoE building blocks are hosted in the following GitHub repository, with sub-
folders for individual building blocks:

https://github.com/PerMedCoE/BuildingBlocks

While the PerMedCoE readthedocs website provides high-level descriptions of each
building block, detailed user documentation is made available in the corresponding
building block folders on GitHub. Links to building block-specific folders in the
PerMedCoE GitHub organisation are provided under each general building block
description on readthedocs.

4.2 Existing use-case workflows

Workflows are currently available for two PerMedCoE Use Cases:

• COVID-19 multiscale modelling of the virus and patients’ tissue (Use Case 5)

• Drug synergies for cancer treatment (Use Case 2)

Currently, PyCOMPSs implementations exist for both workflows, with a SnakeMake
implementation having additionally been developed for Use Case 5. Information on
available workflows, general workflow descriptions and lists of building blocks used by
a given workflow is available on PerMedCoE readthedocs:

https://permedcoe.readthedocs.io/en/latest/03_existing/02_existing_workflows/exi
sting_workflows.html

Further, the workflows and detailed user documentation are hosted in workflow-
specific PerMedCoE GitHub repositories:

• https://github.com/PerMedCoE/covid-19-workflow

• https://github.com/PerMedCoE/drug-synergies-workflow

https://permedcoe.readthedocs.io/en/latest/03_existing/01_available_building_blocks/available_building_blocks.html
https://permedcoe.readthedocs.io/en/latest/03_existing/01_available_building_blocks/available_building_blocks.html
https://github.com/PerMedCoE/BuildingBlocks
https://permedcoe.readthedocs.io/en/latest/03_existing/02_existing_workflows/existing_workflows.html
https://permedcoe.readthedocs.io/en/latest/03_existing/02_existing_workflows/existing_workflows.html
https://github.com/PerMedCoE/covid-19-workflow
https://github.com/PerMedCoE/drug-synergies-workflow

D2.2 Midterm code release
Version 1.0

19

5. Conclusions and future tasks
The infrastructure tooling solutions and recommendations described in this
Deliverable, along with development activities focusing on building block design,
testing and deployment, have enabled the successful development and initial
deployment of PerMedCoE workflows on MareNostrum4 (BSC) and Mahti (CSC). The
building blocks associated with existing PerMedCoE workflows have also been
successfully deployed on other HPC platforms for testing purposes. Activities
undertaken during Year 1, including the exploration of machine learning approaches
as part of Use Case 2 and work undertaken to integrate Croupier with PerMedCoE
workflows, have further enabled us to target several key action points in Years 2 and
3. Further actions of relevance to this Deliverable that will be implemented during the
second half of the PerMedCoE project include:

i) Consolidating and harmonising the installation and configuration steps employed by
individual core software tool Singularity containers and building blocks. This will be
achieved by a systematic cross-comparison of Singularity definition files and building
block recipes.

ii) Further utilisation of machine learning tools as part of PerMedCoE building blocks
and workflows. As part of this task, additional options for implementing GPU support
as part of specific workflow components will be investigated (e.g. for rapid image
analysis).

iii) Short- and medium-term feature development for the Croupier meta-orchestrator.
The following features are planned for implementation by Month 24 of the
PerMedCoE project:

• Assessment of work and data flow distribution (tasks, data) across HPC clusters
(e.g. MN4 (BSC) and Mahti (CSC) for PerMedCoE use cases (e.g. UC2 and UC5)

• Integration with the Snakemake workflow manager

• Integration of the Croupier Web frontend

• Assessment of workflow monitoring and dashboard gathering of consumed
resources for job queuing and execution prediction

• Evaluating opportunities for the monitoring of HPC cluster partitions (i.e.
queues)

iv) Easier installation of and access to building blocks and ancillary files. The
installation of building blocks and related files will ultimately be automated, with
preliminary work into this topic having been commenced on MareNostrum 4. User-
friendly access options for deploying simplified building blocks (e.g. via a web
interface) will be explored during Years 2-3 within Work Package 2.

D2.2 Midterm code release
Version 1.0

20

v) Improving the cross-platform portability of PerMedCoE building blocks and
workflows. This could be done e.g. via employing Singularity containers using the bind
model for MPI jobs (see Section A2.1.6 in Annex I).

D2.2 Midterm code release
Version 1.0

21

Annex I: Roadmaps and design choices made during Year
1
A1. Introduction

This Annex details choices and recommendations concerning the delivery of
PerMedCoE core and auxiliary applications as building blocks designed to meet the
requirements of scientific use cases defined in Work Package 3. Guidelines are
provided on the organisation of building blocks, building block configuration,
workflow and user management processes, sensitive data handling, and steps taken
to improve the cross-compatibility of PerMedCoE software containers on multiple HPC
platforms. Design choices are also described with reference to monitoring building
block performance and scalability. The Annex expands upon and provides an updated
version of PerMedCoE Milestone MS07 [6].

A2. Design choices for building blocks

A2.1 Organisation of containers into building blocks

A2.1.1 Choice of container software

PerMedCoE containers rely on Singularity (to be renamed as Apptainer;
https://github.com/apptainer/singularity), owing to the compatibility of Singularity
containers with diverse HPC platforms. A key benefit is that using Singularity
containers requires no root access on the host system, with container processes
relying on user-level credentials without requiring access to a daemon. Singularity
definition files provide a reproducible and modifiable format for documenting
software installation and configuration steps undertaken as part of PerMedCoE (see
Section A2.2.1 for information on converting between Singularity and Docker
container file formats).

A2.1.2 Core software containers

PerMedCoE core software containers are built to enable use of the following
applications:

• CellNOpt / CARNIVAL (signal transduction network modelling)

• Selected constraint-based modeling toolboxes (genome-scale simulation of
cellular metabolism)

• MaBoSS (stochastic simulations of Boolean models)

• PhysiCell (agent-based modelling for simulating cell-cell interactions)

• New versions of the above applications (e.g. COBREXA, PhysiCell-X and
PhysiBoSS)

https://github.com/apptainer/singularity

D2.2 Midterm code release
Version 1.0

22

To facilitate the use of these applications on HPC platforms, support for OpenMP
threading and multi-node communication will be provided by incorporating the
following features in the container image files:

• Mathematics library supporting threaded routines (e.g. Intel® oneAPI MKL)

• Message Passing Interface (MPI) and associated libraries required by multi-
node job submissions

Due to the limited compatibility between different MPI implementations, it is
recommended that separate core software containers be built to meet demands
imposed by the MPI configurations present on different host environments (see
Section A2.2.3 for information on MPI alternatives). In addition, for application-
specific information on software dependencies and scaling-up for HPC use, see Section
A2.2.2, Deliverables D1.1 [1] and D1.2 [2], and Milestone MS05 [7].

A2.1.3 Other containers

Where required, additional containers will be built to provide functionalities that
either augment or expand upon the functionalities offered by the core PerMedCoE
applications, for example by enabling specific steps required for data processing,
management or analysis. The overall design of the auxiliary containers will be based
on the same principles as the design of the core software containers. An example of
an auxiliary container involves implementing a machine learning toolkit in support of
specific scientific use cases defined in Work Package 3.

A2.1.4 Grouping of containers into building blocks

Containers will be grouped into building blocks based on functionalities delivered to
end-users, with each functionality enabled by a core bioinformatics application(s)
and/or supporting installations. The specific functionalities to be delivered are
identified in Work Package 3. Each building block will invoke a single container to
enable a single predetermined functionality. However, several building blocks may call
upon the same container, depending on the task being executed.

A2.1.5 Building block interface and configuration

Similar to the BioExcel Building Blocks library (http://mmb.irbbarcelona.org/biobb),
the user-facing side of the PerMedCoE building blocks has been designed so that no
direct interaction with the underlying container software (such as using container
software-specific launch commands) is required. A uniform set of Python wrapper
scripts is used to provide standardised shell-level access to all building blocks (Table
A1, Section A2.3.1; also see https://permedcoe.readthedocs.io). Building block
configuration is based on flat .yaml files (or .json files) utilising a standard template,
enabling the specification of software-specific options. Where feasible, the building
blocks will be configured to use a set of default options for software execution where
non-default options have not been specified.

http://mmb.irbbarcelona.org/biobb
https://permedcoe.readthedocs.io/

D2.2 Midterm code release
Version 1.0

23

Wrapper script argument Details

--input List of input paths

--output List of output paths

--config Path to config file (e.g. .yaml)

--tmpdir Sets $TMPDIR and mounts /tmp inside
the container

--help Argument for displaying help information
that shall list the interpretation of input
and output files, and available non-
standard command line arguments and
configuration options

--processes Argument required for MPI jobs

--gpus Requirements for GPU jobs

--mem Memory requirement

Table A1. Python wrapper arguments for creating a unified interface for the
execution of PerMedCoE building blocks.

A2.1.6 Bundled versus external components for building block utilisation

The containerisation of PerMedCoE core applications (Section A2.1.2) requires the
installation of several components within containers that are also available on the host
system (e.g. Python). Where the containerised applications employ Python for data
processing and/or analysis, completing these steps using a container-bundled Python
installation is recommended to ensure version specificity and optimal I/O speeds. In
contrast, the execution of building block wrapper scripts will rely on a Python
installation available on the host system. Otherwise and in general, it is recommended
that the building blocks should rely on no external dependencies (see Section A2.2.3).

By default, interactions between building blocks and workflow managers (Section
A2.3.2) will rely on workflow manager installations on the host system, with no
additional workflow manager processes launched by the containers. Launching
workflow manager processes from within PerMedCoE containers will be made
possible as a separate feature where required.

With reference to the execution of multi-node jobs requiring MPI, Singularity
container image files can be configured in several ways, depending on the end

D2.2 Midterm code release
Version 1.0

24

purpose. For example, MPI configurations used by Singularity containers can rely on
‘hybrid’ or ‘bind’ models (see https://permedcoe.github.io/mpi-in-container for a
detailed introduction to using MPI in Singularity image files). In the hybrid model, the
host MPI acts in tandem with a MPI installation inside the container. The MPI version
included in the container must match that on the host. In the bind model, the host
system MPI (and/or elements related to it, such as relevant drivers) is bound to the
container. Initially, PerMedCoE building blocks will utilise image files built using the
hybrid model, with containers relying on the bind model being under investigation.
Provided that their functionality can be ensured on multiple host systems, containers
employing the bind model offer potential advantages over images based on the hybrid
model, with container definition files using the bind model being comparatively robust
to host system updates (see Section A2.1.7).

A2.1.7 Guidelines for container definition file preparation

In the following, recommendations are provided for the construction of container
definition files to improve their adaptability and to facilitate version control. A
suggested layout for Singularity definition files is provided in Table A2.

Software version specifications and operating system updates. It is recommended that
software versions are specified at the beginning of the %post section in the Singularity
container definition file, using environment variables. This enables the introduction of
software updates without a need to modify subsequent installation commands.
Where possible, operating system updates and library installations should also be
introduced prior to other installation commands.

Software configuration. Where possible, PerMedCoE container definition files should
employ a standardised shared set of environment variables to specify global
configuration options. For example, for threaded applications (e.g. software
installations using OpenMP threading), a single thread should be used by default. To
enable users to modify threading settings depending on the analysis being performed,
the number of threads will be made possible to specify in the building block
configuration files (Section A2.1.5). Similarly, it is recommended that users be able to
specify custom environment variables using building block configuration files.

Section / components Notes

1. Container + building block titles

2. Operating system specification See Section A2.2.3 for information on
operating system / distribution selection

3. Licensing and maintainer information .txt file with summary of software
licenses, maintainer name and contact
details

https://permedcoe.github.io/mpi-in-container

D2.2 Midterm code release
Version 1.0

25

4. External files copied into container E.g. internal configuration files

5. Environment variables for installations Separate from environment variables
loaded upon container execution

6. General library installations E.g. based on a list in a separate .txt file

7. General software installations Software required by downstream
installations and configuration steps

8. Core and auxiliary application
installations

PerMedCoE core applications and
software installations supporting them

9. Global environment variables Default variables loaded at runtime

Table A2. Recommended layout of Singularity definition files for PerMedCoE
containers.

A2.2 Software tool harmonisation and cross-platform compatibility

A2.2.1 Converting between container file types

While PerMedCoE building blocks will be based on Singularity containers (Section
A2.1.1), Singularity Python (https://singularityhub.github.io/singularity-cli) can be
used to convert Singularity definition files to a format compatible with Docker
(https://www.docker.com). By default, Docker containers require root privileges from
users and access to a daemon (Docker daemon). However, a rootless mode for running
Docker containers is available in Docker v20.10 onward.

A2.2.2 Software dependencies

To ensure the mutual compatibility of PerMedCoE building blocks, installations of
software dependencies will be matched across containers (e.g. via version-bound
installation scripts). An outline of general requirements of the core applications
(Section A2.1.1), as well as further dependencies introduced by their modification for
deployment on HPC platforms, is provided in Table A3. For additional details for the
refactoring and scaling-up of the applications for HPC use, see Milestone MS05
(Roadmap on core applications’ needs for pre-exascale optimisation), Deliverable D1.1
(Roadmap of software scalability to pre-exascale, extension processes and best
practices for software development) and Deliverable D1.2 (Software best practices
and optimisation interim report).

Application General dependencies Dependencies introduced
by adaptation for HPC

CellNOpt / CARNIVAL C/C++, R, GraphViz > 2.2 OpenMP, MPI, HighFive

https://singularityhub.github.io/singularity-cli
https://www.docker.com/

D2.2 Midterm code release
Version 1.0

26

CytoCopter plugin requires
Cytoscape 3.5 and Java 11
(e.g. OpenJDK 11)

COBREXA Julia language runtime,
JuMP.jl, DistributedData.jl,
LP solver supported by
JuMP.jl

(None)

MaBoSS C++, Perl, Python MPI

PhysiCell-X C++, OpenMP MPI, potentially libraries
required for GPU support

Where employed, the COMP Superscalar (COMPSs) introduces several further
dependencies. A full list of COMPSs dependencies is available in the COMPSs
GitHub repository (https://github.com/bsc-wdc/compss).

Table A3. Dependencies of HPC-adapted PerMedCoE core applications.

A2.2.3 Host environment characteristics and heterogeneity

This section provides an overview of HPC environments on which PerMedCoE tools
are expected to be employed. Commonalities and differences between the
environments are highlighted to support the development of practices aimed at
ensuring the cross-platform compatibility of building blocks (Section A2.2.4). The
contents of this section are based on a living document circulated between WP1-3 and
are periodically updated.

Commonalities between host environments. Most HPC environments considered in
PerMedCoE feature RHEL or CentOS as the operating system and Slurm as the batch
job system. Most host systems have Singularity installations available, with support
for OpenMPI and NVIDIA GPUs.

Differences between host environments. BSC CTE-Arm features PJM as the batch job
system rather than Slurm. Several host systems presently lack PyCOMPsSs
installations, with installations primarily available on BSC platforms and CSC Mahti.
CSC LUMI and BSC CTE-AMD feature AMD (as opposed to NVIDIA) GPUs. Details
concerning the network software stack require confirmation for most host
environments.

A2.2.4 Steps to ensure compatibility between building blocks and HPC platforms

In the following, recommendations are made in order to ensure cross-compatibility
between individual PerMedCoE Singularity image files, as well as building blocks and
diverse HPC environments.

https://github.com/bsc-wdc/compss

D2.2 Midterm code release
Version 1.0

27

Internalisation of building block dependencies. With the exception of employing a
host-specific Python installation to run wrapper scripts and job submissions requiring
communication with the host MPI installation, dependencies needed to use
PerMedCoE core and auxiliary applications should be included within the relevant
container image files.

Options for threading. To ensure cross-container compatibility, options for threading
support should be implemented in a standardised way in all PerMedCoE Singularity
definition files. For example, the same Intel® oneAPI MKL Link Line Advisor settings
should be used for Intel® oneAPI MKL installations in all definition files.

MPI alternatives. Depending on the host environment, the MPI installation may be
based on either Open MPI or Intel® MPI (which implements MPICH). To enable their
use on host environments with different MPI installations, it is recommended that
separate implementations of the same PerMedCoE Singularity containers be designed
with relevant MPI installations included, with building blocks providing the option to
select the correct MPI version for a particular host environment. MPI version-specific
differences in analysis code should be taken into account to support the
implementation of PerMedCoE building blocks on multiple host environments.
Solutions for automated switching between several MPI installations within a single
container are subject to investigation.

Choice of Linux distribution. The choice of Linux distribution (e.g. Ubuntu versus
CentOS) must be harmonised between individual building blocks because it has
implications for job parallelisation using MPI. For example, OpenFabrics Enterprise
Distribution (OFED) versions available via the Mellanox Technologies Ltd. public
repository (https://www.mellanox.com/support/mlnx-ofed-public-repository) are
distribution-specific.

GPU architectures. Similar to the implementation model concerning support for
different host MPI installations, it is recommended that separate Singularity
containers be developed for different GPU architectures (NVIDIA / CUDA or AMD /
ROCm), with the relevant building blocks providing the opportunity to select the
correct GPU architecture for a given host environment.

Optimal use of environment variables. Where any environment variables are set
outside the container (Section A2.1.7), these should be prefaced by
‘SINGULARITYENV_’ to both separate them from variables already set on the host and
to ensure that they are transposed into the container at runtime.

A2.3 Workflow overview and orchestration

This section details design choices with reference to the use of PerMedCoE building
blocks as part of analytical workflows, including information on workflow
management tools, job schedulers, and resource and user management.

A2.3.1 Utilisation of building blocks as part of workflows

https://www.mellanox.com/support/mlnx-ofed-public-repository

D2.2 Midterm code release
Version 1.0

28

Options for building block utilisation include:

• Manual execution

• Workflows created by end-users

• Using pre-built workflows

• Employing a meta-tool for workflow generation

Initially access to PerMedCoE building blocks will be provided via pre-built workflows
specific to individual Use Cases, with options for workflow construction by end-users
explored during the second half of the project. Current workflow managers employed
for PerMedCoE workflow execution include PyCOMPSs, SnakeMake and NextFlow.

A2.3.2 Job schedulers and resource management

Building blocks are designed to be independent of the job scheduling method. Building
blocks shall therefore not interact with any external resource manager or job
scheduler. If any dynamic execution or scheduling is required (i.e. it is insufficient to
assign a static pool of resources to the building block), building blocks shall request
the required resources from the workflow manager, in a way configured by the
workflow author. Building blocks should not attempt to independently probe what
resources are available, but should work only with these explicitly specified by the
workflow manager.

This restriction should make the building block execution easy to specify in many
contemporary job schedulers and workflow specification frameworks, including
PyCOMPSs, SnakeMake, NextFlow, HPC queueing systems such as Slurm and PBS, and
even shell scripts and Jupyter notebooks useful for small-scale demonstration
purposes.

A2.3.3 Federated user management

Support models for federated user management as part of PerMedCoE workflow
management are currently under development. A framework for federated user
management is required to enable building block and workflow execution on multiple
HPC environments.

A2.4 Handling of sensitive data

To comply with regulations concerning the handling of sensitive data, no raw data or
data generated by analytical software will be stored within PerMedCoE container
images. Personally sensitive data will be processed to enable their anonymised use on
diverse platforms and host systems. A centralised approach will be adopted for
sensitive data processing, with work related to this topic carried out by the Barcelona
Supercomputing Center (BSC).

D2.2 Midterm code release
Version 1.0

29

A topic being investigated within PerMedCoE is the use of encrypted Singularity
containers and their implementation as part of workflows on diverse host
environments.

A2.5 Analytical diagnostics and performance monitoring

Analytical diagnostics. As part of designing PerMedCoE building blocks it is
recommended that relevant analytical diagnostics (e.g. model diagnostics, warnings,
and performance-relevant timing) be generated by default, in addition to output files
produced by the analytical software being used. The diagnostics shall be stored in a
line-oriented machine-readable text format, such as CSV or syslog-like records.

Performance monitoring. Monitoring of building block performance, scalability and
adherence to PoP recommendations will be carried out using tools such as Extrae and
Paraver. Wherever the comprehensive performance profiling is required within a
building block, it is recommended that this be implemented separately (e.g. in a
specialised building block version) or turned off by default, to avoid performance
degradation during routine use.

D2.2 Midterm code release
Version 1.0

30

Acronyms and Abbreviations

- CLI: Command Line Interface
- D: Deliverable
- GDSC: Genomics of Drug Sensitivity in Cancer
- HPC: High-performance computing
- HTTP: Hypertext Transfer Protocol
- IAM: Identity Access Management
- IC50: Half maximal inhibitory concentration
- JWT: JSON Web Token
- ML: Machine learning
- MN4: MareNostrum4
- MPI: Message Passing Interface
- ORAS: OCI Registry As Storage
- PoP: Performance Optimisation and Productivity
- RMSE: Root mean square error
- SSO: Single Sign-On
- UC: Use Case

D2.2 Midterm code release
Version 1.0

31

References

1. PerMedCoE Deliverable D1.1: Roadmap of software scalability to pre-exascale,
extension processes and best practices for software development

2. PerMedCoE Deliverable D1.2: Software best practices and optimisation interim
report

3. Ding J, Condon A, Shah SP. (2018) Interpretable dimensionality reduction of
single cell transcriptome data with deep generative models. Nat Commun 9:
2002. https://doi.org/10.1038/s41467-018-04368-5

4. Simm J, Arany A, Zakeri P, Haber T, Wegner JK, Chupakhin V, Ceulemans H,
Moreau Y. (2017) Macau: Scalable Bayesian factorization with high-
dimensional side information using MCMC. 2017 IEEE 27th International
Workshop on Machine Learning for Signal Processing (MLSP), 2017, pp. 1-6.
DOI: 10.1109/MLSP.2017.8168143

5. PerMedCoE Deliverable D2.1: Pilot workflow to test infrastructure

6. PerMedCoE Milestone MS07: Design choices for building blocks

7. PerMedCoE Milestone MS05: Roadmap on core applications’ needs for pre-
exascale optimisation

	Table of contents
	1. Executive Summary
	2. Introduction
	3. General infrastructure tooling for building blocks and workflows
	3.1. Software containerisation and access to core tool image files
	3.2. Building block development
	3.3 Exploration of machine learning methods
	3.4 Adherence to software best practices
	3.5 Croupier implementation

	4. Available building blocks and use-case workflows
	4.1 Existing building blocks
	4.2 Existing use-case workflows

	5. Conclusions and future tasks
	Annex I: Roadmaps and design choices made during Year 1

	Acronyms and Abbreviations
	References

