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1. Executive Summary 
This Deliverable presents an overview of PerMedCoE activities during Year 1 in relation 
to solutions for infrastructure tooling (including software containerisation, building 
block and workflow development), adherence of building blocks and workflows to 
best software practices identified in Deliverable 1.1, and available user documentation 
including a catalogue of existing building blocks and workflows. Further, the 
Deliverable discusses steps taken to explore machine learning methods as part of 
PerMedCoE during the first half of the project, and presents updated general design 
choice recommendations for building block and workflow development. 
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2. Introduction 
Tasks undertaken within PerMedCoE Work Package 2 involve packaging HPC-
optimised and containerised core software tools as building blocks designed to 
perform specific functionalities. By providing end-users with a standardised interface 
to execute individual building blocks and combine building blocks into workflows, it is 
possible to address diverse use cases of interest to researchers and practitioners 
within the field of personalised medicine. The optimisation and containerisation of 
core software tools take place as part of PerMedCoE Work Package 1, with example 
use cases addressed by different building blocks and workflows defined in Work 
Package 3. Further tasks addressed by Work Package 2 include formulating design 
choices for building blocks and the integration of core software tools as part of use-
case workflows, improving the scalability and interoperability of workflows over 
different HPC platforms, and providing tools to improve the usability of and access to 
the PerMedCoE infrastructure.   

In support of Work Package 2 activities during Year 1 of the PerMedCoE project, the 
present Deliverable provides:   

• Summaries of infrastructure tooling solutions to date  

• Details on the adherence of PerMedCoE building blocks and workflows to the 
software best-practice guidelines described in Deliverable 1.1 [1]  

• A current catalogue of building blocks and use-case workflows with links to 
user documentation and development code  

• A synthesis of recommendations for the construction and execution of building 
blocks and workflows (Annex I)   

As part of the midterm code release and in support of information provided in the 
Deliverable report, general user documentation has been made available on the 
PerMedCoE readthedocs website:  

https://permedcoe.readthedocs.io 

Detailed user documentation and code specific to building blocks and use-case 
workflows are provided under the PerMedCoE GitHub organisation: 

 https://github.com/PerMedCoE 

  

https://permedcoe.readthedocs.io/
https://github.com/PerMedCoE
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3. General infrastructure tooling for building 
blocks and workflows 

This section summarises the infrastructure tooling solutions designed and employed 
as part of the building block and workflow activities during Year 1 of the PerMedCoE 
project. Wider documentation on building block design choices is available in Annex I 
of the Deliverable. 

3.1. Software containerisation and access to core tool image files 

Following design choices discussed in Section A2 of Annex I, existing PerMedCoE 
building blocks (Section 4.1) use Singularity containers for core software execution. 
Note that Singularity has recently been renamed to Apptainer (https://apptainer.org). 
For clarity, we still use the term Singularity in this document. Singularity definition files 
provide a transparent and reproducible format for documenting software installation 
and configuration steps, with public access to Singularity definition files for 
PerMedCoE core software being described in Deliverable D1.2 [2]. A survey of 
different HPC platforms involved in PerMedCoE, undertaken as part of Work Package 
2 activities, has confirmed the availability of Singularity on most PerMedCoE-affiliated 
host systems (Section A2.2.3 of Annex I). 

Access to pre-built core Singularity images during Year 1 of the PerMedCoE project has 
been limited to PerMedCoE tool developers, with image files hosted on the BSC 
B2DROP service that is restricted to PerMedCoE partners (b2drop.bsc.es). During Year 
2, public access to image files on GitHub will be supported via ORAS 
(https://oras.land/cli). ORAS-enabled access to Singularity images is already 
supported by the COBREXA core software, with user documentation on pre-built 
images provided in the COBREXA GitHub repository: 

https://github.com/LCSB-BioCore/COBREXA.jl#prebuilt-images 

3.2. Building block development 

General design choices for PerMedCoE building block development are outlined in 
Section A2 of Annex I. Further to using Singularity for core software containerisation 
(Section 3.1), implementing these choices in practice has involved the development 
and deployment of a Python API for constructing building block and workflow 
templates (Section 3.2.1), along with a unified command line interface for building 
block and workflow execution (Section 3.2.2). Public access to existing PerMedCoE 
building blocks is outlined in Section 4.1 of this Deliverable.  

3.2.1. Python API for constructing building block and workflow templates 

The permedcoe package provides the Python API necessary for the development of 
building blocks within the PerMedCoE scope. It also provides a command line tool that 
eases the creation of building blocks and workflows with templates. This package is 
publicly available via the Pypi repository (https://pypi.org/project/permedcoe) 

https://apptainer.org/
https://oras.land/cli/
https://github.com/LCSB-BioCore/COBREXA.jl#prebuilt-images
https://pypi.org/project/permedcoe/
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enabling its easy installation with pip, and in GitHub 
(https://github.com/PerMedCoE/permedcoe). 

The Python API provided by the permedcoe package comprises a set of decorators, 
parameter type definitions and functions to be used in the building block 
implementation 
(https://permedcoe.readthedocs.io/en/latest/02_components/components.html#py
thon-api): 

• The decorators enable one to define the functionality of the building block and 
hide the container and execution complexities 

• The parameter type definitions enable to declare the type of the building block 
input and output parameters (e.g. files or directories) 

• The functions provide helper functionalities to improve its operation 

The available decorators are: @task, @mpi, @binary, @constraint and @container. 
The @task decorator is used to specify that a function should be considered as a unit 
of work and serves as the placeholder for parameter type definitions. A building block 
usually comprises a single unit of work, but can be composed of more than one. The 
@mpi or the @binary decorator can be placed over the @task decorator to define 
that the unit of work is a MPI application or a binary application, and is the placeholder 
for a particular binary. The @container decorator is used to define the container 
where the unit of work will be executed. On top of all these decorators, @constraint 
can be used to define specific requirements for the binary/MPI/task. This decorator is 
specific to the PyCOMPSs workflow manager and is used to specify the task 
requirements on HPC resources, such as the number of cores or amount of memory. 
Other workflow managers specify this using their own mechanisms when calling the 
building blocks. 

The permedcoe base package also provides a command line interface which is able to 
provide building block and workflow templates. User documentation for the 
command line interface is available via the PerMedCoE readthedocs website: 

https://permedcoe.readthedocs.io/en/latest/02_components/components.html#te
mplate-creation 

More specifically, the building block template is the skeleton of a blank building block 
with the structure of a Python package. It is ready to be deployed and used (with 
dummy code including all decorators and parameter type definitions), so that the only 
requirement from the building block developer is to complete its main file with the 
desired functionality. This skeleton and building block structure are described in detail 
in the documentation:  

https://permedcoe.readthedocs.io/en/latest/04_creating/01_building_block_templa
tes/building_block_templates.html 

https://github.com/PerMedCoE/permedcoe
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#python-api
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#python-api
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#template-creation
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#template-creation
https://permedcoe.readthedocs.io/en/latest/04_creating/01_building_block_templates/building_block_templates.html
https://permedcoe.readthedocs.io/en/latest/04_creating/01_building_block_templates/building_block_templates.html
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The application template additionally represents a blank application for a given 
workflow manager (currently for  PyCOMPSs, Snakemake and NextFlow templates, 
which are the workflow managers considered within the scope of PerMedCoE), so that 
the workflow developer can start importing and using the desired building blocks. This 
either takes place from the command line interface using the Snakemake or Nextflow 
managers, or using the PyCOMPSs Python interface. The relevant documentation is 
provided in: 

https://permedcoe.readthedocs.io/en/latest/04_creating/02_application_templates
/application_templates.html 

Finally, the entire permedcoe package usage has been condensed in a step-by-step 
tutorial that includes information ranging from building block creation to the workflow 
execution: 

https://permedcoe.readthedocs.io/en/latest/04_creating/04_tutorial/tutorial.html 

3.2.2. Unified command line interface for building block and workflow execution 

A unified command line interface for building block execution has been implemented 
as part of the permedcoe base package, which is automatically exposed by all building 
blocks. This interface has been established following guidelines described in Annex I 
(Section A2.1.5). Consequently, a building block can be directly invoked from the 
command line after its deployment with the building block name.  

The permedcoe base package command line interface is further able to invoke 
building blocks respecting the same interface as workflow applications:  

https://permedcoe.readthedocs.io/en/latest/02_components/components.html#bui
lding-block-execution  

https://permedcoe.readthedocs.io/en/latest/02_components/components.html#ap
plication-execution 

3.3 Exploration of machine learning methods 

3.3.1 Tasks targeted for machine learning toolbox development 

Developing a machine learning toolbox for the PerMedCoE project is one of the tasks 
of Work Package 2 (Task 2.1). Analytical tools and use case workflows have been 
scoped to identify opportunities for using machine learning to improve their HPC 
compatibility. Tasks and tools that have been identified as potential targets for 
machine learning toolbox development during Years 2-3 of the PerMedCoE project are 
outlined in Table 1. 

 

 

https://permedcoe.readthedocs.io/en/latest/04_creating/02_application_templates/application_templates.html
https://permedcoe.readthedocs.io/en/latest/04_creating/02_application_templates/application_templates.html
https://permedcoe.readthedocs.io/en/latest/04_creating/04_tutorial/tutorial.html
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#building-block-execution
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#building-block-execution
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#application-execution
https://permedcoe.readthedocs.io/en/latest/02_components/components.html#application-execution
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Analytical task Examples of AI/ML software or libraries Potential 
PerMedCoE 
use cases 

Dimensionality reduction 
(using e.g. unsupervised 
ML) 

Scvis (Ding et al. 2018 [3]); Python and/or R, 
UMAP 

All use cases 

Approximate solution for 
non-linear metabolic 
systems that model 
thermodynamics of 
reactions 

COBREXA (specialised solver relying on ML 
methods, under development) 

1, 4 

Model trajectory analyses DEAP (https://deap.readthedocs.io) 4 

Use of surrogate models PhysiCell 4, 5 

Model parameter fitting DEAP and general hyperparameter 
optimisation frameworks, e.g. ray tune 
(https://docs.ray.io/en/latest/tune/index.htm
l), hyperopt 
(http://hyperopt.github.io/hyperopt) and 
optuna (https://optuna.org)  

4, 5 

Classification tasks (e.g. 
classifying metabolic fluxes 
to uncover possible cell 
phenotypes) 

TensorFlow (https://www.tensorflow.org), 
Keras (https://keras.io), PyTorch 
(https://pytorch.org) 

1, 2 

Diverse unsupervised and 
supervised ML tasks for 
PyCOMPSs workflows 

dislib  (https://github.com/bsc-wdc/dislib)  All use cases 

Matrix factorisation TensorFlow, Macau 
(https://macau.readthedocs.io/en/latest/inde
x.html), JAX 
(https://jax.readthedocs.io/en/latest) 

2 (see Section 
3.3.2 for 
details) 

Table 1. Analysis tasks and their relation to AI/ML software or libraries with potential 
applications in PerMedCoE use cases.    

 

 

 

 

https://deap.readthedocs.io/
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
http://hyperopt.github.io/hyperopt/
https://optuna.org/
https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://github.com/bsc-wdc/dislib
https://macau.readthedocs.io/en/latest/index.html
https://macau.readthedocs.io/en/latest/index.html
https://jax.readthedocs.io/en/latest
https://jax.readthedocs.io/en/latest
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3.3.2. Exploration of ML methods for analyses using CellNOpt / CARNIVAL 

To date, the application of machine learning techniques has primarily been explored 
with reference to using CellNOpt / CARNIVAL as part of PerMedCoE workflows. The 
refactoring and/or extensions of CellNopt / CARNIVAL focus on the fast and scalable 
generation of mechanistic models, from which functional features (e.g active or 
inactive proteins, pathways or interactions) can be extracted from gene expression 
data or (phospho)proteomics data. However, one important issue that needs to be 
addressed is the translation of the output of these models to a relevant outcome of 
interest. 

This issue could be addressed by adding a ML step for learning a mapping function 
from CellNOpt / CARNIVAL features to the response of interest. For this purpose, the 
CellNOpt / CARNIVAL development team has evaluated the use of different ML 
techniques and libraries to expand the capabilities of this software, focusing on three 
main aspects: 1) scalability, 2) interpretability and 3) simplicity (lightweight, minimal 
dependencies). 

For preliminary evaluation, different systems were implemented based on 
probabilistic matrix factorisation (using Macau), neural networks (using TensorFlow), 
and matrix factorisation with gradient descent (using JAX). Macau [4] is a probabilistic 
matrix factorisation method with side features, which is able to predict particular 
responses with missing data (e.g. some drugs are only tested in some cells) and also 
incorporating side information (e.g. drug and cell features) in order to make 
predictions for unobserved drugs and cell lines. Although the performance is very 
good in this setting, current implementation requires the use of a Gibbs sampler for 
sampling the posterior distribution, which is slow, does not scale well and does not 
support the use of GPUs. Another line of investigation has involved using Tensorflow 
with Keras to build different neural network architectures. One issue with neural 
networks is that the typical high-dimensional nonlinear functions that are learnt are 
good for prediction but complex for interpretation. Although these libraries can also 
be used to learn linear models, the code needed to replicate some basic matrix 
factorisation and training with gradient descent is non-trivial. Further, the libraries are 
heavy in terms of dependencies.  

JAX was selected for further exploration of ML methodologies, since it met the specific 
requirements set by PerMedCoE (see Table 1). Benefits of JAX in this context include:  

• Use of XLA (a domain-specific compiler for linear algebra) to compile NumPy 
programs on GPUs. 

• Easy-to-define linear models with NumPy-like syntax 

• Auto-differentiation of NumPy operations and some Python syntax 

• Relatively lightweight (e.g. in comparison with TensorFlow)  
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Using JAX, four different linear models of matrix factorisation for prediction of drug 
responses on cell lines have been implemented (with this topic being of relevance to 
PerMedCoE Use Case 2). The approach is similar to the Macau method but using a 
deterministic method instead of a probabilistic one for better scalability. 

Matrix factorisation for IC50 imputation 

Assuming drug responses have only been measured for certain cell lines, this problem 
is basically an imputation problem (predicting the missing drug responses). Given a 
matrix of log(IC50) values where rows are drugs and cells are columns, this matrix can 
be factorised as DTC where D and C are two low-rank matrices. Each log(IC50) value is 
written as a linear combination of two latent vectors, one for drugs and one for cells. 
The model can be extended to add a bias term for drugs (a column vector) and a bias 
for cell lines (a row vector):  

log(IC50) = DTC + bias_drugs + bias_cells 

This is implemented in JAX in the following manner: 

@jax.jit 

def mf(params): 

 LD, LC, ld_bias, lc_bias, mu = params 

 Dt = jnp.transpose(jnp.add(LD, ld_bias)) 

 C = jnp.add(LC, lc_bias) 

 return jnp.dot(Dt, C) + mu 

Matrix factorisation using cell features 

A goal of using machine learning methods as part of Use Case 2 is to employ features 
from both drugs and cells. Using CARNIVAL / CellNopt, it is possible to identify 
interesting features concerning altered signalling pathways for cell lines. In order to 
incorporate this information, one can further decompose the latent cell matrix C, so 
that each cell latent vector is a function of the cell features. This can be written as: 

C = LC * CFT + bias_cells 

Where LC is the latent matrix to be estimated and CF is the matrix with cell features:   

@jax.jit 

def mf_with_col_features(params, col_features): 

 LD, LC, ld_bias, lc_bias, mu = params 

 Dt = jnp.transpose(jnp.add(LD, ld_bias)) 

 C = jnp.add(jnp.dot(LC, jnp.transpose(col_features)), lc_bias) 

 return jnp.dot(Dt, C) + mu 

Matrix factorisation using drug features 
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Something similar can be done in instances where drug features (e.g target genes of 
the drugs) are available, but cell features are unavailable: 

@jax.jit 

def mf_with_row_features(params, row_features): 

 LD, LC, ld_bias, lc_bias, mu = params 

 D = jnp.add(jnp.dot(LD, jnp.transpose(row_features)), ld_bias) 

 Dt = jnp.transpose(D) 

 C = jnp.add(LC, lc_bias) 

 return jnp.dot(Dt, C) + mu 

Matrix factorisation using both cell and drug features 

If both drug and cell features are available, it is possible to extend the model as 
follows: 

@jax.jit 

def mf_with_features(params, row_features, col_features): 

 LD, LC, ld_bias, lc_bias, mu = params 

 Dt = jnp.transpose(jnp.add(jnp.dot(LD, 

      jnp.transpose(row_features)), ld_bias)) 

 C = jnp.add(jnp.dot(LC, jnp.transpose(col_features)), lc_bias) 

 return jnp.dot(Dt, C) + mu 

After defining the different models, latent matrices can be estimated from the data, 
using JAX autodiff capabilities to differentiate through the model given a loss function 
(RMSE) between predicted log(IC50) values and observed ones. More details about 
how the training is done are available in the following notebook:  

https://colab.research.google.com/drive/134kuHCpJ3kOTDHyDMCXhYq1XKYOhhN9
h#scrollTo=MfL75o7cXaAz 

A test container for exploiting this model is available via: 

https://github.com/saezlab/permedcoe/tree/master/containers/ml-jax 

Further, a building block was developed for using this approach together with other 
developed building blocks (e.g CARNIVAL and CellNopt), which is available at:  

https://github.com/saezlab/permedcoe/tree/master/building-
blocks/core/src/ml_jax_drug_prediction  

The building block / Singularity container includes a way to test the performance of 
the method with different settings using GDSC data, explained here: 

https://github.com/saezlab/permedcoe/tree/master/building-blocks/core 

  

https://colab.research.google.com/drive/134kuHCpJ3kOTDHyDMCXhYq1XKYOhhN9h#scrollTo=MfL75o7cXaAz
https://colab.research.google.com/drive/134kuHCpJ3kOTDHyDMCXhYq1XKYOhhN9h#scrollTo=MfL75o7cXaAz
https://github.com/saezlab/permedcoe/tree/master/containers/ml-jax
https://github.com/saezlab/permedcoe/tree/master/building-blocks/core/src/ml_jax_drug_prediction
https://github.com/saezlab/permedcoe/tree/master/building-blocks/core/src/ml_jax_drug_prediction
https://github.com/saezlab/permedcoe/tree/master/building-blocks/core
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3.4 Adherence to software best practices 

According to the software best-practice guidelines described in Deliverable D1.1 [1], 
software and code produced by PerMedCoE must, among other recommendations, 
adhere to FAIR (Findable, Accessible, Interoperable, Reusable) principles. Adherence 
of the PerMedCoE core software tools to these guidelines has been assessed based on 
a follow-up questionnaire circulated among core tool developers, with summaries of 
the questionnaire results provided in Deliverable D1.2 [2]. 

Actions to ensure the adherence of PerMedCoE building blocks and workflows to FAIR 
principles during Year 1 are summarised in Table 2. Further steps to ensure the 
compatibility of PerMedCoE building blocks and workflows with multiple HPC 
infrastructures are outlined in Section A2 of Annex I. To date, building blocks and 
workflows have been deployed on two platforms (BSC MareNostrum 4 and CSC 
Mahti), with several development results presented in Deliverable D2.1 [5]. Further 
cross-platform compatibility testing and follow-up work on ensuring adherence to 
software best practices is planned for Years 2-3 of the project (Section 5). 

The underlying motivation for the building block and workflow designs implemented 
in PerMedCoE is to provide solutions that are: 

• Portable and cross-compatible at multiple levels of organisation (ranging from 
the level of individual tools and building blocks to workflows and, ultimately, 
HPC platforms hosted by PerMedCoE partners) 

• Expert-validated and error-free 

• Composable and modular (facilitating the easy use and deployment of building 
blocks as part of complex workflows) 

To date, validation of the existing PerMedCoE building blocks has primarily focused on 
those building blocks used in Use Case 5. Further validation work in relation to other 
use cases is currently in progress, with Use Case 2 workflows already having been 
successfully deployed on MareNostrum 4.  

FAIR principle Actions concerning building blocks and workflows during Year 1 

F (Findable) Provision of a general website for PerMedCoE user documentation 

Catalogue of building blocks and workflows in the general PerMedCoE 
user documentation 

Establishing linkages between user documentation and GitHub 
repositories for building blocks and workflows  

Workflows for end users’ consumption searchable in the Croupier 
frontend (marketplace) 
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A (Accessible) Open licensing of building blocks and workflows (whenever possible 
depending on the tools used within the building blocks and building 
blocks used in the workflows) 

Usage of GitHub repositories for source code storage and distribution 

Development of a common CLI for building block and workflow 
deployment, and template creation 

Preparation of end-user documentation for building blocks and 
workflows  

Workflow execution for end users in the Croupier frontend  

I (Interoperable) Usage of Singularity (Apptainer) containers for core software tool 
packaging in building blocks 

Compatibility of core software building blocks with auxiliary 
applications (see definition of auxiliary applications in Section 2.1.3 of 
Annex I) and between PerMedCoE use cases  

Establishing support for multiple workflow managers (PyCOMPSs and 
SnakeMake; initial development of support for NextFlow) 

Development work to establish solutions for cross-infrastructure 
workflow deployments using Croupier 

R (Reusable) Open access to building block and workflow code under the 
PerMedCoE GitHub organisation 

(For details on access to core software-associated code, see Deliverable 
D1.2 [2]) 

Multiple (based on different inputs) workflow execution from 
Croupier’s frontend 

Table 2. Steps taken during Year 1 of the PerMedCoE project to ensure adherence of 
building blocks and workflows to FAIR principles. 

3.5 Croupier implementation 

Croupier is a meta-orchestrator or workflow manager (implemented as a plugin of the 
Cloudify Cloud workflow manager1) that can distribute an application’s work tasks and 
data across heterogeneous infrastructures, and in particular across HPC clusters for 
execution (see Deliverable D2.1 [5]). Croupier enables i) application providers to 
register their applications as workflows into the Croupier marketplace, and ii) 
application consumers to browse existing applications, and execute them in target 
HPC clusters with the input data they supply. See the Application Execution with 

                                                      

1  https://cloudify.co/  

https://cloudify.co/
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Croupier section in PerMedCoE online documentation for additional information 
about Croupier’s supported roles and their procedures:  

https://permedcoe.readthedocs.io/en/latest/04_creating/03_croupier/croupier.htm
l 

Note: in the following, by application we mean any Croupier workflow whose tasks 
are executed by PyCOMPSs or Snakemake in the backend HPC infrastructures.  

Since Deliverable D2.1 [5], some of Croupier’s features have been improved, and 
others incorporated. Croupier’s code for PerMedCoE is available at the Croupier 
GitHub repository: 

https://github.com/ari-apc-lab/croupier/tree/permedcoe 

The data management support for data transfer across infrastructures has been 
redesigned and reimplemented, aiming for flexibility. Croupier supports HTTP transfer 
between Cloud and HPC data sources and RSYNC transfer among HPC clusters. 
Croupier also acts as a data proxy between those HPC clusters with external Internet 
access disabled. 

The Identity Access Management (IAM) has been improved. Croupier supports 
declaring multiple Vault servers in workflows and uses the same mechanism to 
retrieve access credentials for HPC clusters and data sources.  

A complete Croupier framework, including KeyCloak for Single Sign On (SSO) user’s 
authentication, Vault for secrets management, Cloudify/Croupier for workflow 
execution, and the monitoring framework based on Prometheus and Grafana, for HPC 
task monitoring, has been installed within a Kubernetes cluster in the Atos 
infrastructure and is available at http://<service>.croupier.permedcoe.eu. For 
instance, Cloudify/Croupier is available at:  

http://cloudify.croupier.permedcoe.eu 

In order to execute an application’s workflow, consumers must log themselves in 
KeyCloak to get access to the Cloudify/Croupier frontend. Then, Croupier uses Vault 
instances registered in the workflow to retrieve their credentials to get access to the 
HPC infrastructures for task execution and data transfer, by using the token it gets 
from Vault, which requests the KeyCloak JWT token. This mechanism only enables 
Croupier to collect credentials for the logged user who has executed the workflow. 
The Vault token is deleted after the credentials are retrieved and they are kept only in 
memory for the time the workflow is being executed, reinforcing the credentials’ 
safekeeping. 

Croupier can be used by PerMedCoE users to run applications from its web frontend. 
Therefore, Croupier needs to be integrated with the PerMedCoE workflow managers 
that are being run in the HPC clusters, namely PyCOMPSs and SnakeMake to distribute 
an application’s tasks.  

https://permedcoe.readthedocs.io/en/latest/04_creating/03_croupier/croupier.html
https://permedcoe.readthedocs.io/en/latest/04_creating/03_croupier/croupier.html
https://github.com/ari-apc-lab/croupier/tree/permedcoe
http://cloudify.croupier.permedcoe.eu/
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Croupier has been integrated with PyCOMPSs by using remote ssh access to its CLI. 
For more information, see the PyCOMPSs usage documentation at: 

https://pycompss.readthedocs.io/en/latest/Sections/08_PyCOMPSs_CLI/02_Usage.h
tml  

Croupier follows the PyCOMPSs standard procedure to: 

1. Deploy an instance of each application’s task in the user’s workspace of its HPC 
cluster 

2. Launch each application’s task in the HPC cluster where it has been deployed 

3. Monitor periodically each scheduled application’s task inquiring for its 
execution state. This is done by using the SLURM scheduler CLI. 

4. Collect monitored data about the queuing and execution timing and the 
resources consumed for each launched application’s task, which is aggregated 
into a Grafana dashboard2. 

Croupier distributes an application’s tasks according to the flow declared in the 
application’s workflow, either sequentially or in parallel.  

The usage of Croupier has been tested for launching workflows associated with Use 
Cases 5 (COVID-19) and 2 (Drug Synergies) in MareNostrum4 (BSC). Moreover, the 
Croupier task deployment support has been adopted to deploy both UCs in MN4 from 
GitHub sources. For this, the application provider has to include the application 
deployment script within the application blueprint artifacts. Setails on how the COVID-
19 workflow is declared for Croupier using the TOSCA specification are provided in the 
Croupier section in the PerMedCoE online documentation. 

The following code snippet (see next page) declares the main COVID-19 task: 

job: 

    type: croupier.nodes.PyCOMPSsJob 

    properties: 

        job_options: 

            modules:  

                - load singularity/3.5.2 

                - use /apps/modules/modulefiles/tools/COMPSs/libraries 

                - load permedcoe 

            app_name: covid19 

            app_source: permedcoe_apps/covid19/covid-19-workflow-

main/Workflow/PyCOMPSs/src     

            env: 

                                                      

2  This feature will be integrated in the short term. 

https://pycompss.readthedocs.io/en/latest/Sections/08_PyCOMPSs_CLI/02_Usage.html
https://pycompss.readthedocs.io/en/latest/Sections/08_PyCOMPSs_CLI/02_Usage.html
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                - PERMEDCOE_IMAGES: ${PERMEDCOE_IMAGES} 

                - PERMEDCOE_ASSETS: ${PERMEDCOE_ASSETS} 

                - dataset: $HOME/permedcoe_apps/covid19/covid-19-workflow-

main/Resources/data 

            compss_args: 

                num_nodes: { get_input: num_nodes } 

                exec_time: { get_input: exec_time } 

                log_level: 'off 

                graph: true 

                tracing: 'false' 

                python_interpreter: python3 

                qos: debug 

            app_file: '$(pwd)/covid19_pilot.py' 

            app_args: { get_input: covid19_args } 

        deployment: 

            bootstrap: "scripts/deploy.sh" 

            revert: "scripts/revert.sh" 

            hpc_execution: false 

    relationships: 

        - type: task_managed_by_interface 

          target: hpc 

        - type: input 

          target: data_small 

        - type: output 

          target: covid_results 

        - type: deployment_source 

          target: github_data_access_infra 

 

This task, declared by the COVID-19 application provider, needs to be fed with the 
consumer’s inputs (those obtained with the get_input function in the task definition) 
for execution. The job_options property of the task (of type PyCOMPSsJob) collects 
the different inputs required by PyCOMPSs for task deployment and execution, 
including required modules, application sources, PyCOMPSs parameters and 
application parameters. 

Plans for future work concerning the Croupier implementation for PerMedCoE are 
described in Section 5. 
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4. Available building blocks and use-case 
workflows 

4.1 Existing building blocks 

A list of available building blocks, along with general building block descriptions, is 
available on the PerMedCoE readthedocs website: 

https://permedcoe.readthedocs.io/en/latest/03_existing/01_available_building_blo
cks/available_building_blocks.html 

All PerMedCoE building blocks are hosted in the following GitHub repository, with sub-
folders for individual building blocks: 

https://github.com/PerMedCoE/BuildingBlocks 

While the PerMedCoE readthedocs website provides high-level descriptions of each 
building block, detailed user documentation is made available in the corresponding 
building block folders on GitHub. Links to building block-specific folders in the 
PerMedCoE GitHub organisation are provided under each general building block 
description on readthedocs. 

4.2 Existing use-case workflows 

Workflows are currently available for two PerMedCoE Use Cases: 

• COVID-19 multiscale modelling of the virus and patients’ tissue (Use Case 5) 

• Drug synergies for cancer treatment (Use Case 2) 

Currently, PyCOMPSs implementations exist for both workflows, with a SnakeMake 
implementation having additionally been developed for Use Case 5. Information on 
available workflows, general workflow descriptions and lists of building blocks used by 
a given workflow is available on PerMedCoE readthedocs: 

https://permedcoe.readthedocs.io/en/latest/03_existing/02_existing_workflows/exi
sting_workflows.html 

Further, the workflows and detailed user documentation are hosted in workflow-
specific PerMedCoE GitHub repositories: 

 

• https://github.com/PerMedCoE/covid-19-workflow 

• https://github.com/PerMedCoE/drug-synergies-workflow 

  

https://permedcoe.readthedocs.io/en/latest/03_existing/01_available_building_blocks/available_building_blocks.html
https://permedcoe.readthedocs.io/en/latest/03_existing/01_available_building_blocks/available_building_blocks.html
https://github.com/PerMedCoE/BuildingBlocks
https://permedcoe.readthedocs.io/en/latest/03_existing/02_existing_workflows/existing_workflows.html
https://permedcoe.readthedocs.io/en/latest/03_existing/02_existing_workflows/existing_workflows.html
https://github.com/PerMedCoE/covid-19-workflow
https://github.com/PerMedCoE/drug-synergies-workflow
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5. Conclusions and future tasks 
The infrastructure tooling solutions and recommendations described in this 
Deliverable, along with development activities focusing on building block design, 
testing and deployment, have enabled the successful development and initial 
deployment of PerMedCoE workflows on MareNostrum4 (BSC) and Mahti (CSC). The 
building blocks associated with existing PerMedCoE workflows have also been 
successfully deployed on other HPC platforms for testing purposes. Activities 
undertaken during Year 1, including the exploration of machine learning approaches 
as part of Use Case 2 and work undertaken to integrate Croupier with PerMedCoE 
workflows, have further enabled us to target several key action points in Years 2 and 
3. Further actions of relevance to this Deliverable that will be implemented during the 
second half of the PerMedCoE project include: 

i) Consolidating and harmonising the installation and configuration steps employed by 
individual core software tool Singularity containers and building blocks. This will be 
achieved by a systematic cross-comparison of Singularity definition files and building 
block recipes. 

ii) Further utilisation of machine learning tools as part of PerMedCoE building blocks 
and workflows. As part of this task, additional options for implementing GPU support 
as part of specific workflow components will be investigated (e.g. for rapid image 
analysis). 

iii) Short- and medium-term feature development for the Croupier meta-orchestrator. 
The following features are planned for implementation by Month 24 of the 
PerMedCoE project: 

• Assessment of work and data flow distribution (tasks, data) across HPC clusters 
(e.g. MN4 (BSC) and Mahti (CSC) for PerMedCoE use cases (e.g. UC2 and UC5) 

• Integration with the Snakemake workflow manager 

• Integration of the Croupier Web frontend 

• Assessment of workflow monitoring and dashboard gathering of consumed 
resources for job queuing and execution prediction  

• Evaluating opportunities for the monitoring of HPC cluster partitions (i.e. 
queues) 

iv) Easier installation of and access to building blocks and ancillary files. The 
installation of building blocks and related files will ultimately be automated, with 
preliminary work into this topic having been commenced on MareNostrum 4. User-
friendly access options for deploying simplified building blocks (e.g. via a web 
interface) will be explored during Years 2-3 within Work Package 2. 
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v) Improving the cross-platform portability of PerMedCoE building blocks and 
workflows. This could be done e.g. via employing Singularity containers using the bind 
model for MPI jobs (see Section A2.1.6 in Annex I). 
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Annex I: Roadmaps and design choices made during Year 
1 
A1. Introduction 

This Annex details choices and recommendations concerning the delivery of 
PerMedCoE core and auxiliary applications as building blocks designed to meet the 
requirements of scientific use cases defined in Work Package 3. Guidelines are 
provided on the organisation of building blocks, building block configuration, 
workflow and user management processes, sensitive data handling, and steps taken 
to improve the cross-compatibility of PerMedCoE software containers on multiple HPC 
platforms. Design choices are also described with reference to monitoring building 
block performance and scalability. The Annex expands upon and provides an updated 
version of PerMedCoE Milestone MS07 [6]. 

A2. Design choices for building blocks 

A2.1 Organisation of containers into building blocks 

A2.1.1 Choice of container software 

PerMedCoE containers rely on Singularity (to be renamed as Apptainer; 
https://github.com/apptainer/singularity), owing to the compatibility of Singularity 
containers with diverse HPC platforms. A key benefit is that using Singularity 
containers requires no root access on the host system, with container processes 
relying on user-level credentials without requiring access to a daemon. Singularity 
definition files provide a reproducible and modifiable format for documenting 
software installation and configuration steps undertaken as part of PerMedCoE (see 
Section A2.2.1 for information on converting between Singularity and Docker 
container file formats). 

A2.1.2 Core software containers 

PerMedCoE core software containers are built to enable use of the following 
applications: 

• CellNOpt / CARNIVAL (signal transduction network modelling)      

• Selected constraint-based modeling toolboxes (genome-scale simulation of 
cellular metabolism) 

• MaBoSS (stochastic simulations of Boolean models) 

• PhysiCell (agent-based modelling for simulating cell-cell interactions) 

• New versions of the above applications (e.g. COBREXA, PhysiCell-X and     
PhysiBoSS) 

https://github.com/apptainer/singularity


 
D2.2 Midterm code release    
Version 1.0 
 

22 
 

To facilitate the use of these applications on HPC platforms, support for OpenMP 
threading and multi-node communication will be provided by incorporating the 
following features in the container image files: 

• Mathematics library supporting threaded routines (e.g. Intel® oneAPI MKL) 

• Message Passing Interface (MPI) and associated libraries required by multi-
node job submissions      

Due to the limited compatibility between different MPI implementations, it is 
recommended that separate core software containers be built to meet demands 
imposed by the MPI configurations present on different host environments (see 
Section A2.2.3 for information on MPI alternatives). In addition, for application-
specific information on software dependencies and scaling-up for HPC use, see Section 
A2.2.2, Deliverables D1.1 [1] and D1.2 [2], and Milestone MS05 [7]. 

A2.1.3 Other containers 

Where required, additional containers will be built to provide functionalities that 
either augment or expand upon the functionalities offered by the core PerMedCoE 
applications, for example by enabling specific steps required for data processing, 
management or analysis. The overall design of the auxiliary containers will be based 
on the same principles as the design of the core software containers. An example of 
an auxiliary container involves implementing a machine learning toolkit in support of 
specific scientific use cases defined in Work Package 3. 

A2.1.4 Grouping of containers into building blocks 

Containers will be grouped into building blocks based on functionalities delivered to 
end-users, with each functionality enabled by a core bioinformatics application(s) 
and/or supporting installations. The specific functionalities to be delivered are 
identified in Work Package 3. Each building block will invoke a single container to 
enable a single predetermined functionality. However, several building blocks may call 
upon the same container, depending on the task being executed. 

A2.1.5 Building block interface and configuration 

Similar to the BioExcel Building Blocks library (http://mmb.irbbarcelona.org/biobb), 
the user-facing side of the PerMedCoE building blocks has been designed so that no 
direct interaction with the underlying container software (such as using container 
software-specific launch commands) is required. A uniform set of Python wrapper 
scripts is used to provide standardised shell-level access to all building blocks (Table 
A1, Section A2.3.1; also see https://permedcoe.readthedocs.io). Building block 
configuration is based on flat .yaml files (or .json files) utilising a standard template, 
enabling the specification of software-specific options. Where feasible, the building 
blocks will be configured to use a set of default options for software execution where 
non-default options have not been specified. 

http://mmb.irbbarcelona.org/biobb
https://permedcoe.readthedocs.io/


 
D2.2 Midterm code release    
Version 1.0 
 

23 
 

 

Wrapper script argument Details 

--input List of input paths 

--output List of output paths 

--config Path to config file (e.g. .yaml) 

--tmpdir Sets $TMPDIR and mounts /tmp inside 
the container 

--help Argument for displaying help information 
that shall list the interpretation of input 
and output files, and available non-
standard command line arguments and 
configuration options 

--processes Argument required for MPI jobs 

--gpus Requirements for GPU jobs 

--mem Memory requirement 

Table A1. Python wrapper arguments for creating a unified interface for the 
execution of PerMedCoE building blocks.     

A2.1.6 Bundled versus external components for building block utilisation 

The containerisation of PerMedCoE core applications (Section A2.1.2) requires the 
installation of several components within containers that are also available on the host 
system (e.g. Python). Where the containerised applications employ Python for data 
processing and/or analysis, completing these steps using a container-bundled Python 
installation is recommended to ensure version specificity and optimal I/O speeds. In 
contrast, the execution of building block wrapper scripts will rely on a Python 
installation available on the host system. Otherwise and in general, it is recommended 
that the building blocks should rely on no external dependencies (see Section A2.2.3). 

By default, interactions between building blocks and workflow managers (Section 
A2.3.2) will rely on workflow manager installations on the host system, with no 
additional workflow manager processes launched by the containers. Launching 
workflow manager processes from within PerMedCoE containers will be made 
possible as a separate feature where required. 

With reference to the execution of multi-node jobs requiring MPI, Singularity 
container image files can be configured in several ways, depending on the end 
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purpose. For example, MPI configurations used by Singularity containers can rely on 
‘hybrid’ or ‘bind’ models (see https://permedcoe.github.io/mpi-in-container for a 
detailed introduction to using MPI in Singularity image files). In the hybrid model, the 
host MPI acts in tandem with a MPI installation inside the container. The MPI version 
included in the container must match that on the host. In the bind model, the host 
system MPI (and/or elements related to it, such as relevant drivers) is bound to the 
container. Initially, PerMedCoE building blocks will utilise image files built using the 
hybrid model, with containers relying on the bind model being under investigation. 
Provided that their functionality can be ensured on multiple host systems, containers 
employing the bind model offer potential advantages over images based on the hybrid 
model, with container definition files using the bind model being comparatively robust 
to host system updates (see Section A2.1.7). 

A2.1.7 Guidelines for container definition file preparation 

In the following, recommendations are provided for the construction of container 
definition files to improve their adaptability and to facilitate version control. A 
suggested layout for Singularity definition files is provided in Table A2. 

Software version specifications and operating system updates. It is recommended that 
software versions are specified at the beginning of the %post section in the Singularity 
container definition file, using environment variables. This enables the introduction of 
software updates without a need to modify subsequent installation commands. 
Where possible, operating system updates and library installations should also be 
introduced prior to other installation commands. 

Software configuration. Where possible, PerMedCoE container definition files should 
employ a standardised shared set of environment variables to specify global 
configuration options. For example, for threaded applications (e.g. software 
installations using OpenMP threading), a single thread should be used by default. To 
enable users to modify threading settings depending on the analysis being performed, 
the number of threads will be made possible to specify in the building block 
configuration files (Section A2.1.5). Similarly, it is recommended that users be able to 
specify custom environment variables using building block configuration files. 

Section / components Notes 

1. Container + building block titles  

2. Operating system specification See Section A2.2.3 for information on 
operating system / distribution selection 

3. Licensing and maintainer information .txt file with summary of software 
licenses, maintainer name and contact 
details 

https://permedcoe.github.io/mpi-in-container
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4. External files copied into container E.g. internal configuration files 

5. Environment variables for installations Separate from environment variables 
loaded upon container execution 

6. General library installations E.g. based on a list in a separate .txt file 

7. General software installations Software required by downstream 
installations and configuration steps 

8. Core and auxiliary application 
installations 

PerMedCoE core applications and 
software installations supporting them 

9. Global environment variables Default variables loaded at runtime 

Table A2. Recommended layout of Singularity definition files for PerMedCoE 
containers. 

A2.2 Software tool harmonisation and cross-platform compatibility 

A2.2.1 Converting between container file types 

While PerMedCoE building blocks will be based on Singularity containers (Section 
A2.1.1), Singularity Python (https://singularityhub.github.io/singularity-cli) can be 
used to convert Singularity definition files to a format compatible with Docker 
(https://www.docker.com). By default, Docker containers require root privileges from 
users and access to a daemon (Docker daemon). However, a rootless mode for running 
Docker containers is available in Docker v20.10 onward. 

A2.2.2 Software dependencies 

To ensure the mutual compatibility of PerMedCoE building blocks, installations of 
software dependencies will be matched across containers (e.g. via version-bound 
installation scripts). An outline of general requirements of the core applications 
(Section A2.1.1), as well as further dependencies introduced by their modification for 
deployment on HPC platforms, is provided in Table A3. For additional details for the 
refactoring and scaling-up of the applications for HPC use, see Milestone MS05 
(Roadmap on core applications’ needs for pre-exascale optimisation), Deliverable D1.1 
(Roadmap of software scalability to pre-exascale, extension processes and best 
practices for software development) and Deliverable D1.2 (Software best practices 
and optimisation interim report). 

Application General dependencies Dependencies introduced 
by adaptation for HPC 

CellNOpt / CARNIVAL C/C++, R, GraphViz > 2.2 OpenMP, MPI, HighFive 

https://singularityhub.github.io/singularity-cli
https://www.docker.com/
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CytoCopter plugin requires 
Cytoscape 3.5 and Java 11 
(e.g. OpenJDK 11) 

COBREXA Julia language runtime, 
JuMP.jl, DistributedData.jl, 
LP solver supported by 
JuMP.jl 

(None) 

MaBoSS C++, Perl, Python MPI 

PhysiCell-X C++, OpenMP MPI, potentially libraries 
required for GPU support 

Where employed, the COMP Superscalar (COMPSs) introduces several further 
dependencies. A full list of COMPSs dependencies is available in the COMPSs 
GitHub repository (https://github.com/bsc-wdc/compss). 

Table A3. Dependencies of HPC-adapted PerMedCoE core applications. 

A2.2.3 Host environment characteristics and heterogeneity 

This section provides an overview of HPC environments on which PerMedCoE tools 
are expected to be employed. Commonalities and differences between the 
environments are highlighted to support the development of practices aimed at 
ensuring the cross-platform compatibility of building blocks (Section A2.2.4). The 
contents of this section are based on a living document circulated between WP1-3 and 
are periodically updated. 

Commonalities between host environments. Most HPC environments considered in 
PerMedCoE feature RHEL or CentOS as the operating system and Slurm as the batch 
job system. Most host systems have Singularity installations available, with support 
for OpenMPI and NVIDIA GPUs. 

Differences between host environments. BSC CTE-Arm features PJM as the batch job 
system rather than Slurm. Several host systems presently lack PyCOMPsSs 
installations, with installations primarily available on BSC platforms and CSC Mahti. 
CSC LUMI and BSC CTE-AMD feature AMD (as opposed to NVIDIA) GPUs. Details 
concerning the network software stack require confirmation for most host 
environments. 

A2.2.4 Steps to ensure compatibility between building blocks and HPC platforms 

In the following, recommendations are made in order to ensure cross-compatibility 
between individual PerMedCoE Singularity image files, as well as building blocks and 
diverse HPC environments. 

https://github.com/bsc-wdc/compss


 
D2.2 Midterm code release    
Version 1.0 
 

27 
 

Internalisation of building block dependencies. With the exception of employing a 
host-specific Python installation to run wrapper scripts and job submissions requiring 
communication with the host MPI installation, dependencies needed to use 
PerMedCoE core and auxiliary applications should be included within the relevant 
container image files.           

Options for threading. To ensure cross-container compatibility, options for threading 
support should be implemented in a standardised way in all PerMedCoE Singularity 
definition files. For example, the same Intel® oneAPI MKL Link Line Advisor settings 
should be used for Intel® oneAPI MKL installations in all definition files. 

MPI alternatives. Depending on the host environment, the MPI installation may be 
based on either Open MPI or Intel® MPI (which implements MPICH). To enable their 
use on host environments with different MPI installations, it is recommended that 
separate implementations of the same PerMedCoE Singularity containers be designed 
with relevant MPI installations included, with building blocks providing the option to 
select the correct MPI version for a particular host environment. MPI version-specific 
differences in analysis code should be taken into account to support the 
implementation of PerMedCoE building blocks on multiple host environments. 
Solutions for automated switching between several MPI installations within a single 
container are subject to investigation. 

Choice of Linux distribution. The choice of Linux distribution (e.g. Ubuntu versus 
CentOS) must be harmonised between individual building blocks because it has 
implications for job parallelisation using MPI. For example, OpenFabrics Enterprise 
Distribution (OFED) versions available via the Mellanox Technologies Ltd. public 
repository (https://www.mellanox.com/support/mlnx-ofed-public-repository) are 
distribution-specific. 

GPU architectures. Similar to the implementation model concerning support for 
different host MPI installations, it is recommended that separate Singularity 
containers be developed for different GPU architectures (NVIDIA / CUDA or AMD / 
ROCm), with the relevant building blocks providing the opportunity to select the 
correct GPU architecture for a given host environment. 

Optimal use of environment variables. Where any environment variables are set 
outside the container (Section A2.1.7), these should be prefaced by 
‘SINGULARITYENV_’ to both separate them from variables already set on the host and 
to ensure that they are transposed into the container at runtime. 

A2.3 Workflow overview and orchestration 

This section details design choices with reference to the use of PerMedCoE building 
blocks as part of analytical workflows, including information on workflow 
management tools, job schedulers, and resource and user management. 

A2.3.1 Utilisation of building blocks as part of workflows 

https://www.mellanox.com/support/mlnx-ofed-public-repository
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Options for building block utilisation include: 

• Manual execution     

• Workflows created by end-users 

• Using pre-built workflows 

• Employing a meta-tool for workflow generation 

Initially access to PerMedCoE building blocks will be provided via pre-built workflows 
specific to individual Use Cases, with options for workflow construction by end-users 
explored during the second half of the project. Current workflow managers employed 
for PerMedCoE workflow execution include PyCOMPSs, SnakeMake and NextFlow. 

A2.3.2 Job schedulers and resource management 

Building blocks are designed to be independent of the job scheduling method. Building 
blocks shall therefore not interact with any external resource manager or job 
scheduler. If any dynamic execution or scheduling is required (i.e. it is insufficient to 
assign a static pool of resources to the building block), building blocks shall request 
the required resources from the workflow manager, in a way configured by the 
workflow author. Building blocks should not attempt to independently probe what 
resources are available, but should work only with these explicitly specified by the 
workflow manager. 

This restriction should make the building block execution easy to specify in many 
contemporary job schedulers and workflow specification frameworks, including 
PyCOMPSs, SnakeMake, NextFlow, HPC queueing systems such as Slurm and PBS, and 
even shell scripts and Jupyter notebooks useful for small-scale demonstration 
purposes. 

A2.3.3 Federated user management 

Support models for federated user management as part of PerMedCoE workflow 
management are currently under development. A framework for federated user 
management is required to enable building block and workflow execution on multiple 
HPC environments.                    

A2.4 Handling of sensitive data 

To comply with regulations concerning the handling of sensitive data, no raw data or 
data generated by analytical software will be stored within PerMedCoE container 
images. Personally sensitive data will be processed to enable their anonymised use on 
diverse platforms and host systems. A centralised approach will be adopted for 
sensitive data processing, with work related to this topic carried out by the Barcelona 
Supercomputing Center (BSC). 
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A topic being investigated within PerMedCoE is the use of encrypted Singularity 
containers and their implementation as part of workflows on diverse host 
environments. 

A2.5 Analytical diagnostics and performance monitoring 

Analytical diagnostics. As part of designing PerMedCoE building blocks it is 
recommended that relevant analytical diagnostics (e.g. model diagnostics, warnings, 
and performance-relevant timing) be generated by default, in addition to output files 
produced by the analytical software being used. The diagnostics shall be stored in a 
line-oriented machine-readable text format, such as CSV or syslog-like records. 

Performance monitoring. Monitoring of building block performance, scalability and 
adherence to PoP recommendations will be carried out using tools such as Extrae and 
Paraver. Wherever the comprehensive performance profiling is required within a 
building block, it is recommended that this be implemented separately (e.g. in a 
specialised building block version) or turned off by default, to avoid performance 
degradation during routine use. 
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Acronyms and Abbreviations 
 

- CLI: Command Line Interface 
- D: Deliverable 
- GDSC: Genomics of Drug Sensitivity in Cancer 
- HPC: High-performance computing 
- HTTP: Hypertext Transfer Protocol 
- IAM: Identity Access Management 
- IC50: Half maximal inhibitory concentration 
- JWT: JSON Web Token 
- ML: Machine learning 
- MN4: MareNostrum4 
- MPI: Message Passing Interface 
- ORAS:  OCI Registry As Storage 
- PoP: Performance Optimisation and Productivity 
- RMSE: Root mean square error 
- SSO: Single Sign-On 
- UC: Use Case  
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