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PERMEDCOE MISSION

PerMedCoE is the HPC/Exascale Centre of Excellence for Personalised Medicine in Europe

The performance of current simulation software is still insufficient to tackle medical problems such
as tumour evolution or patient-specific treatments.

Our goal is to provide an efficient and sustainable entry point to the HPC/Exascale-upgraded
methodology to translate omics analysis into actionable models of cellular functions of medical
relevance.
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TODAY'S PRESENTER
St. EImo Wilken

St. ElImo Wilken completed his undergraduate degree in Chemical
Engineering at the University of Pretoria. His Ph.D. at the University of
California, Santa Barbara leveraged both computational and wet lab
aspects to investigate and understand the metabolism of anaerobic
gut fungi. His current postdoc at the Institute of Quantitative and
Theoretical Biology at the Heinrich Heine University in Disseldorf is
focused on using quantitative models to elucidate the contribution of
metabolism to the stability and composition of microbial consortia.

He has partnered with PerMedCoE researchers, including Dr. Miroslav
Kratochvil, to develop a way to differentiate constraint-based models to
conduct sensitivity analyses efficiently.
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Modeling cellular metabolism with differential equations

Mass balance equations define an ODE metabolic model

Vi V3

Example of simplified metabolic model

dS1—V—V Vj

e — ' 7 ds (1 =1 0 y ds_N v
ds, dat o 1 —1| |7 dt

o T Y3

Each flux is a function of metabolite concentrations, e.g.
Vo) = Reat - €+ 72—



Biological models have many parameters

Classic kinetic model ODE: Parameters of v need to be
s measured
v - Kinetic constants
kCatJ - eq- ﬁ =+ ... . icat,i
vV — M, i ,
. - Enzyme concentrations
Reat,n - €n - m + el
with N the stoichiometric matrix - Regulatory components...
relating fluxes (v) to metabolite - Thermodynamic terms...

concentrations (s) for each (i) reaction in the model

Measuring 1000s of parameters is challenging. Moreover, what effect
does parameter uncertainty have on the model?



Evaluating parameter sensitivity in kinetic models

Kinetic models depend on parameters (p):

ds
3 = N v(s(p), p)

Assume steady state:
0=N-v(s(p),p)

Use the implicit function theorem to differentiate the model [1]:

as ov\ ™' ov
= (“a) N
———’

Concentration control matrix

Metabolic control analysis (MCA) uses % to evaluate the sensitivity

of variables to parameters

[1] Heinrich & Schuster, Springer Science & Business Media, 2012. 5



Reframing a metabolic models by ignoring metabolites

Constraint-based models use fluxes as variables and assume steady
state

V4 V3

Example of simplified metabolic model

ds

— =0=N-v
dt

Underdetermined system, need to add extra assumptions to narrow
solution space



Flux balance analysis is an optimization based model

Flux balance analysis converts a metabolic model into an
optimization problem

max  u(v)
v

s.t. N-v=0

T
bs. Flux [mmol/gDW/h]

..... . Vip <V <V

Central carbon metabolism of E. coli

No kinetics and minimal experimental data are required, but
additional information is simple to add



Constraint-based models reduce parameter burden

GECKO [2], MOMENT [3], etc. algorithms incorporate enzyme kinetics
into flux balance analysis:

20

B max  p(v)
§ s.tt. N-v=0
go V| < Keat - @

Z e < Etotal

What is the sensitivity of

e e (;,“fv?mw“/n?(’ o the predicted fluxes and
Overflow metabolism of E. coli can be enzyme concentrations to
modeled by incorporating enzyme capacity the parameters?

constraints

[2] Sanchez, et al, Mol Syst Biol, 2017. [3] Adadi, et al, PLOS Comp Biol, 2012. 8



Metabolic control analysis for constraint-based models

- What is the analogue of metabolic control analysis for
constraint-based models? Is there one?

- How to efficiently find:
ov
akcat
. _Oe
ORcat
- Is there a way to avoid the finite difference based approach (flux

control coefficients)?
- How can differentiable metabolic models be used to answer
questions about metabolism?

Overarching question: how to differentiate through an optimization
problem?



Implicit differentiation through a convex optimization problem

Flux balance analysis (FBA) type simulations are typically convex
QP/LPs:

mﬁifOWV+cmfz
: v
s. t. E(p)z = d(p) ~ FBA(p) with e.g. z = H
M(p)z < h(p)
How to find %7

At the optimum, z*, the KKT conditions:
Q(p)z* + c(p) + E(p) v +M(p)'A" =0
f(z"(p), v*(p), A*(p), ) = { E(p)z* — d(p) =0
Ao (M(p)z* — h(p)) =0
imply an implicit dependence between the primal (z*) and dual

variables (v*, X*), and the parameters (p) [4-5].
[4] Blondel, et al, Arxiv, 2021. [5] Amos, et al, P Mach Learn Res, 2017. 10




Implicit differentiation through a convex optimization problem

Z*
Letting x* = |v*| suggests that at the optimum:
A*
f(x*(p),p) =0

Hence, by implicitly differentiation [4-5], the sensitivities can be
found by solving:

of ox=  of

ox* op  op
:>ax*__<af)—ﬂaf

ap ox* op

Differentiating through an optimization problem requires finding the
optimum, and thereafter solving a system of linear equations

[4] Blondel, et al, Arxiv, 2021. [5] Amos, et al, P Mach Learn Res, 2017. 1



Enzyme capacity constrained models require k. estimates

10

max  p(v)
s.t. N-v=0
|V| < Keat - €

i Z e < Etotal

Use constraint-based
MCA to find the flux
control coefficients by
b e differentiating the
. optimal solution

Central metabolism of E. coli model iML1515 [6]
aerobic, glucose-fed simulation, machine learning
keat estimates [7]

[6] Monk, et al, Nat Biotechnol, 2017 [7] Heckmann, et al, PNAS, 2020. 12



Sensitivity of fluxes to machine learning estimates of RcatS
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Estimating ks from data using derivatives

Increasingly quantitative absolute proteomic data, &, coupled with in
vivo flux measurements, 7, are available

Given estimated k¢atS, @ model based fit can be calculated

~ 2 5 2
] Vi —V; 1 G =6
i) = 13 (T57) 472 (%5

i J

sst. N-v=0

‘Vi‘ < k’cat,i - €

Z e < Etotat

Using a%au gradient descent can be used to optimize the kinetic
constants to fit the measured data

With derivative information, machine learning derived parameters
can be tuned to better fit a metabolic model



Improving ML k¢, estimates using gradient descent

Glycolysis for WT1#B2 Enzyme
1025 1
- e — APD
0.5 — WT1#B2 3 . T T .
Other conditions ey e LS
3 T PGM
1.5 ]
S 10 —PPS
g 100 TPI
5 0.4 4 — PGK
E E 1005 4 FBA
g — PGl
T T T
2 100 102 100 ENO
7; Iteration
5 0.3
3
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g ENO { 1.0
g 5o PGl
= 9= FBA- 0.5
0.2 ET
2g PoKq [0 N |
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011 capp (NI -1.0
T T T T T T
10° 10 104 100 10 104
Iteration Iteration

Model-based gradient descent decreases model

prediction/observation mismatch
[8] Wilken, et al, Met Eng, 2022. 16



Improving ML k¢, estimates using gradient descent
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Model-based gradient descent using multiple datasets improves Reat
estimates by approximately 35%
[8] Wilken, et al, Met Eng, 2022. 17



Conclusion

Differentiable metabolic models

- Computationally efficient
- Similar mathematical foundation as classic MCA
- Forthcoming package to simplify this analysis

- Solution differentiability unlocks many gradient-based analysis
techniques
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QUESTIONS?

Write your questions using the Q&A button
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NEXT WEBINARS

Visit the Training section on https://permedcoe.eu/ to watch previous webinars and sign up for the
upcoming sessions.

- Webinar: Supercomputer-based modelling and simulation for advanced biomedical
applications
Dr Mariano Vazquez, ELEM Biotech and Barcelona Supercomputing Center (Spain)

Thursday 9 March 2023, 15-16 CET

- Webinar: Development of a virtual Rheumatoid Arthritis synovial fibroblast for large-scale
dynamic analysis and efficient drug-target identification
Dr Anna Niarakis, University of Evry Val d'Essonne and National Institute for Research in Digital
Science and Technology (INRIA)
Thursday 23 March 2023, 15-16 CET
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https://permedcoe.eu/

HPC/Exascale

il From pathway modelling tools

Excellence in

il to cell-level simulations

Get hands-on experience using biological modelling
tools and learn how high-performance computing
clusters can be used to execute biomedical workflows.

25-30 June 2023

https://permedcoe.eu/training/permedcoe-
summer-school-on-cell-level-simulations/
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