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ABOUT THIS WEBINAR

This webinar is being 
recorded and will be 
disseminated afterwards

After the presentation we will 
address the questions posted by the 
audience using the Q&A function

All materials are licensed under a 
CC-BY 4.0 license, except where 
further licensing details are provided
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PERMEDCOE MISSION

www.permedcoe.eu

The performance of current simulation software is still insufficient to tackle medical problems such 
as tumour evolution or patient-specific treatments.

Our goal is to provide an efficient and sustainable entry point to the HPC/Exascale-upgraded 
methodology to translate omics analysis into actionable models of cellular functions of medical 
relevance.

PerMedCoE is the HPC/Exascale Centre of Excellence for Personalised Medicine in Europe
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PERMEDCOE OBJECTIVES

Optimising cell-level 
simulation software 

to run in pre-exascale 
platforms

Use cases driving the
implementation of 

PerMedCoE solutions in 
HPC/Exascale
environment

Integrating PerMed 
communities into the 

European 
HPC/Exascale 

ecosystem

Training biomedical
professionals in the 

use of 
HPC/Exascale

PerMedCoE tools

Building the basis
for the 

sustainability
of the PerMedCoE
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TODAY’S PRESENTER

www.permedcoe.eu

St. Elmo Wilken completed his undergraduate degree in Chemical 
Engineering at the University of Pretoria. His Ph.D. at the University of 
California, Santa Barbara leveraged both computational and wet lab 
aspects to investigate and understand the metabolism of anaerobic 
gut fungi. His current postdoc at the Institute of Quantitative and 
Theoretical Biology at the Heinrich Heine University in Düsseldorf is 
focused on using quantitative models to elucidate the contribution of 
metabolism to the stability and composition of microbial consortia. 

He has partnered with PerMedCoE researchers, including Dr. Miroslav 
Kratochvíl, to develop a way to differentiate constraint-based models to 
conduct sensitivity analyses efficiently. 

St. Elmo Wilken
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Modeling cellular metabolism with differential equations

Mass balance equations define an ODE metabolic model

v1 v2 v3
s1 s2

Example of simplified metabolic model

ds1
dt = v1 � v2
ds2
dt = v2 � v3

() ds
dt =

"
1 �1 0
0 1 �1

#2

64
v1
v2
v3

3

75 () ds
dt = N · v

Each flux is a function of metabolite concentrations, e.g.
v2 = kcat · e · s1

KM+s1
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Biological models have many parameters

Classic kinetic model ODE:

ds
dt = N · v

v =

2

664

kcat,1 · e1 · s1
KM,1+s1 + ...
...

kcat,N · eN · sN
KM,N+sN + ...

3

775

with N the stoichiometric matrix
relating fluxes (v) to metabolite
concentrations (s)

Parameters of v need to be
measured
• Kinetic constants

• kcat,i
• KM,i

• Enzyme concentrations
• ei

• Regulatory components...
• Thermodynamic terms...

for each (i) reaction in the model

Measuring 1000s of parameters is challenging. Moreover, what effect
does parameter uncertainty have on the model?
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Evaluating parameter sensitivity in kinetic models

Kinetic models depend on parameters (p):

ds
dt = N · v(s(p),p)

Assume steady state:
0 = N · v(s(p),p)

Use the implicit function theorem to differentiate the model [1]:

=) @s
@p = �

✓
N@v
@s

◆�1
N

| {z }
Concentration control matrix

@v
@p

Metabolic control analysis (MCA) uses @s
@p to evaluate the sensitivity

of variables to parameters

[1] Heinrich & Schuster, Springer Science & Business Media, 2012. 5



Reframing a metabolic models by ignoring metabolites

Constraint-based models use fluxes as variables and assume steady
state

v1 v2 v3
s1 s2

Example of simplified metabolic model

ds
dt = 0 = N · v

Underdetermined system, need to add extra assumptions to narrow
solution space
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Flux balance analysis is an optimization based model

Flux balance analysis converts a metabolic model into an
optimization problem
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max
v

µ(v)

s. t. N · v = 0
vlb  v  vub

No kinetics and minimal experimental data are required, but
additional information is simple to add

7



Constraint-based models reduce parameter burden

GECKO [2], MOMENT [3], etc. algorithms incorporate enzyme kinetics
into flux balance analysis:

Growth rate (1/h)
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Overflow metabolism of E. coli can be
modeled by incorporating enzyme capacity

constraints

max
v,e

µ(v)

s. t. N · v = 0
|v|  kcat · e
X

ei  Etotal

What is the sensitivity of
the predicted fluxes and
enzyme concentrations to

the parameters?

[2] Sánchez, et al, Mol Syst Biol, 2017. [3] Adadi, et al, PLOS Comp Biol, 2012. 8



Metabolic control analysis for constraint-based models

• What is the analogue of metabolic control analysis for
constraint-based models? Is there one?

• How to efficiently find:
• @v

@kcat
• @e

@kcat
• Is there a way to avoid the finite difference based approach (flux
control coefficients)?

• How can differentiable metabolic models be used to answer
questions about metabolism?

Overarching question: how to differentiate through an optimization
problem?
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Implicit differentiation through a convex optimization problem

Flux balance analysis (FBA) type simulations are typically convex
QP/LPs:

min
z
1
2z

TQ(p)z+ c(p)Tz

s. t. E(p)z = d(p)
M(p)z  h(p)

9
>>>=

>>>;
⇡ FBA(p) with e.g. z =

"
v
e

#

How to find @FBA
@p ?

At the optimum, z⇤, the KKT conditions:

f(z⇤(p),⌫⇤(p),�⇤(p),p) =

8
>><

>>:

Q(p)z⇤ + c(p) + E(p)T⌫⇤ +M(p)T�⇤ = 0
E(p)z⇤ � d(p) = 0
�⇤ � (M(p)z⇤ � h(p)) = 0

imply an implicit dependence between the primal (z⇤) and dual
variables (⌫⇤,�⇤), and the parameters (p) [4-5].

[4] Blondel, et al, Arxiv, 2021. [5] Amos, et al, P Mach Learn Res, 2017. 10



Implicit differentiation through a convex optimization problem

Letting x⇤ =

2

64
z⇤
⌫⇤

�⇤

3

75 suggests that at the optimum:

f(x⇤(p),p) = 0

Hence, by implicitly differentiation [4-5], the sensitivities can be
found by solving:

@f
@x⇤ · @x

⇤

@p =
@f
@p

=) @x⇤
@p = �

✓
@f
@x⇤

◆�1
· @f
@p

Differentiating through an optimization problem requires finding the
optimum, and thereafter solving a system of linear equations

[4] Blondel, et al, Arxiv, 2021. [5] Amos, et al, P Mach Learn Res, 2017. 11



Enzyme capacity constrained models require kcat estimates
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max
v,e

µ(v)

s. t. N · v = 0
|v|  kcat · e
X

ei  Etotal

Use constraint-based
MCA to find the flux
control coefficients by
differentiating the
optimal solution

[6] Monk, et al, Nat Biotechnol, 2017. [7] Heckmann, et al, PNAS, 2020. 12



Sensitivity of fluxes to machine learning estimates of kcats
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Flux sensitivities identify reaction kinetics exerting high control on
solution[8] Wilken, et al, Met Eng, 2022. 13



Sensitivity of enzyme concentrations to kcats
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Estimating kcats from data using derivatives

Increasingly quantitative absolute proteomic data, ê, coupled with in
vivo flux measurements, v̂, are available

Given estimated kcats, a model based fit can be calculated

L(kcats) = min
v,e

1
I
X

i

✓
v̂i � vi
v̂i

◆2
+
1
J
X

j

✓ êj � ej
êj

◆2

s. t. N · v = 0
|vi|  kcat,i · ei
X

ei  Etotal

Using @L
@kcat , gradient descent can be used to optimize the kinetic

constants to fit the measured data

With derivative information, machine learning derived parameters
can be tuned to better fit a metabolic model
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Improving ML kcat estimates using gradient descent
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prediction/observation mismatch

[8] Wilken, et al, Met Eng, 2022. 16



Improving ML kcat estimates using gradient descent
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[8] Wilken, et al, Met Eng, 2022. 17



Conclusion

Differentiable metabolic models
• Computationally efficient
• Similar mathematical foundation as classic MCA
• Forthcoming package to simplify this analysis
• Solution differentiability unlocks many gradient-based analysis
techniques
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QUESTIONS?

• Write your questions using the Q&A button
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